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1. EXECUTIVE SUMMARY 
 

This study was commissioned by the Queensland Department of Environment and Heritage 

Protection (EHP) to analyse data from the South East Queensland (SEQ) Koala Monitoring 

Program and to receive an independent assessment of the conservation status of the koala in the 

seven Local Government Areas (LGAs) that make up the ‘Koala Coast’ –  Moreton Bay Regional 

Council, Noosa Shire Council, Ipswich City Council, Brisbane City Council, Redland City Council, 

Logan City Council and Gold Coast City Council. The primary aims of the project were to: 

1) develop a model of relative koala density (here defined as the number of koalas per 

hectare) that could be used to predict koala densities across the seven LGAs in South East 

Queensland and to identify key correlates with koala density;  

2) develop a model of trend in koala populations where possible and to identify any correlates 

with trend; and 

3) provide any recommendations on the monitoring program. 

 
 

Using survey data between 1996 and 2015, we developed spatial models of koala density for the 

seven LGAs and models of trends in koala density for the Koala Coast and Pine Rivers survey 

regions, where there was sufficient replication through time to estimate trends. We used Bayesian 

state-space statistical models that explicitly account for detection errors incurred through the 

survey process. This was particularly important because the data were collected using multiple 

survey methods and because estimating detection error was likely to be critical for obtaining 

unbiased estimates of koala density. In addition, our trend models were explicit about the dynamics 

of koala populations through time in the Koala Coast and Pine Rivers regions, leading to more 

nuanced insights into the status of these koala populations than standard regression models. We 

used V-fold cross validation to validate and compare alternative models and also to quantify model 

adequacy. 

 

The spatial models were then used to map koala densities (and 95% credible intervals) across the 

LGAs. Although it may be possible to estimate koala numbers (i.e. the number of koalas across the 

region) from the spatial maps of koala density, we guard against doing so without careful 

consideration and possibly the use of ancillary data. This is because substantial biases could arise 

from the extrapolating across such a large area using a model derived from data collected from a 

limited area only. Therefore, here we focus on reporting on relative densities and trends which are 

likely to be much more robust and within the scope of the project.        

 

The spatial models predicted the highest koala densities occurring along the coastal regions of 

SEQ, but particularly in the central and southern coastal regions, but with average densities across 

the region estimated as being relatively low at 0.04 koalas/ha.  
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There were also some unexpected areas of high density predicted in western regions, although 

these were areas where surveys have not been conducted and uncertainty in the density estimates 

was high. Overall, across the region, the primary factors associated with the broad-scale 

distribution of koala densities were climatic factors (temperature and rainfall). However, there was 

also some suggestion that koala densities may be highest at intermediate levels of forest cover 

(foliage projective cover [FPC]) and road density. These patterns may arise because the Eucalypt 

habitats that koalas prefer occur at intermediate levels of FPC and human settlement patterns are 

largely coincident with where the best koala habitat occurs along the coast (although high road 

density ultimately leads to a decline in koala densities). There was also evidence that koala 

densities increased with reduced amounts of forest cover around sites. This may be due to the 

crowding of koalas in sites when local habitat loss occurs and where low amounts of habitat are 

present in the surrounding landscape, although this would be expected to be a transient effect 

ultimately. 

 

There was strong evidence for a rapid decline in population densities between 1996 and 2014 in 

the Koala Coast and Pine Rivers populations, with an estimated 80.3% (95% credible interval: 

70.8% to 86.2%) decline in the Koala Coast sites and an estimated 54.3% (95% credible interval: 

20.1% to 74.4%) decline in the Pine Rivers sites. There was also evidence that the rates of decline 

have increased over time. However, apart from a strong seasonal effect, with declines occurring 

primarily in the periods between summer and winter, rather than the periods between winter and 

summer, there were few strong correlates with the rate of decline. Given the rapid declines in the 

Koala Coast and Pine Rivers, a key priority for policy development is to understand whether this is 

a more widespread phenomenon across the region, or restricted to these areas.     

 

Finally, a number of key additional recommendations for the monitoring program arise from this 

study, including: 

• use the estimated spatial distributions of koala density and measures of uncertainty to 

prioritise locations for future surveys to improve the effectiveness of the monitoring program 

and maximise improvement in density predictions over time, 

• design future survey locations and temporal replication with clear monitoring objectives in 

mind, with the understanding that no single monitoring design, of realistic size, is likely to 

be effective at simultaneously measuring spatial distributions and trends, 

• design survey methods to explicitly deal with, and estimate, observation error better, and 

• adopt a formal database structure that ensures data is recorded in a consistent manner, 

that no important data are missing from survey records, and that allows the dataset to be 

easily transformed into a format that facilitates statistical analysis. 
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2. INTRODUCTION 
 

The koala (Phascolarctos cinereus) is an Australian endemic, Queensland’s faunal emblem and 

one of the world’s most iconic mammals. Koalas have a broad but patchy distribution restricted to 

the eucalypt forests and woodlands of eastern Australia, extending from north Queensland to 

South Australia (Melzer et al. 2000, Lunney et al. 2009, Adams-Hosking et al. 2011a, Santika et al. 

2014). Although koala populations in Victoria and South Australia face issues of overabundance 

(Masters et al. 2004, Lunney et al. 2007a), in New South Wales and Queensland, koala 

populations are threatened by habitat loss, dog attacks, vehicle collisions, climate change and 

disease (Dique et al. 2003d, Lunney et al. 2007b, Rhodes et al. 2011, Seabrook et al. 2011, 

Lunney et al. 2014, Santika et al. 2014). In South East Queensland, koala populations appear to 

have suffered declines due to a range of threats associated with habitat loss/urbanisation and 

disease (Rhodes et al. 2011), with the Koala Coast population estimated to have declined by 68% 

between 1996/1999 and 2010 (Department of Environment and Resource Management 2012).     

 

In response to the increasing pressures on koalas in South East Queensland, in 2004 the species 

was listed as vulnerable in the South East Queensland Bioregion under the Queensland Nature 

Conservation Act 1992. Then, in 2012, the koala was recognised as a threatened species in 

Queensland, New South Wales and the Australian Capital Territory under the Environmental 

Protection Biodiversity Conservation Act 1999 (EPBC). The Victorian and South Australian 

populations were not listed because they were considered abundant and mostly stable or 

increasing. As a consequence of the national listing of koalas, the conservation status of the koala 

in Queensland is being reviewed, with the likely outcome being that koalas will be listed as 

vulnerable across the state (statements.qld.gov.au/Statement/2015/5/31/queenslands-koalas-to-

be-listed-as-vulnerable).  

  

Since 1996 the Queensland Government has made significant investments in baseline and 

monitoring surveys of koalas in South East Queensland with the aim of understanding koala 

distribution, abundance, ecology and population dynamics (Department of Environment and 

Resource Management 2012).  Initial monitoring surveys were constrained to the Koala Coast and 

Pine Rivers Shire areas, but were recently extended to other Local Government Areas in South 

East Queensland.  This is one of the most extensive data sets on koala populations in Australia 

and provides unique opportunity to quantify and understand the drivers of koala population trends 

and distribution. However, an integrated analysis of the entire data set to understand koala 

population trends and distributions has not yet been undertaken. This report addresses this gap 

and presents a statistical analysis of the data to: 

1) understand the key factors related to koala density; 

2) map predicted distributions across the region; and 

3) quantify population trends in the Koala Coast and Pine Rivers.   

http://www.statements.qld.gov.au/Statement/2015/5/31/queenslands-koalas-to-be-listed-as-vulnerable
http://www.statements.qld.gov.au/Statement/2015/5/31/queenslands-koalas-to-be-listed-as-vulnerable
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3. OVERVIEW OF KOALA POPULATION DYNAMICS 
 

The distribution and density of koalas is influenced by numerous factors affecting habitat extent, 

habitat quality and population dynamics. Koalas are habitat specialists and feed almost exclusively 

on eucalyptus leaves (McKay 1988, Melzer and Houston 2001), which have low nutritional value 

(minerals, protein and non-structural carbohydrate) and are high in indigestible or toxic materials 

(cellulose, lignin and plant secondary metabolites). Consequently, to meet their energy and water 

requirements, koalas are selective about which tree species and leaves they consume and the 

nutritional value of leaves varies among Eucalypt species and along geophysical gradients (Moore 

et al. 2010). In general, soils with higher fertility and moisture holding capacity produce better 

quality, more palatable browse with higher nutrients, which support higher koala densities  (Cork 

1986, Lawler et al. 1998, Moore and Foley 2000 Wallis, 2003 #439). In South East Queensland, for 

example, soil substrate and tree species have been found to be important in determining the 

occurrence of koalas in Noosa Shire (McAlpine et al. 2006a, McAlpine et al. 2008). 

 

Koala home range sizes are variable and influenced by habitat quality, season, koala density and 

sex, with females usually having smaller home ranges than males. Home range areas of 1–

135have been described in southern and central Queensland (White and Kunst 1990, Melzer 

1995, Ellis et al. 2002, Thompson 2006). Dispersal and exploratory movements by koalas have 

been shown to average approximately 3.5km in South East Queensland, with less frequent long-

range dispersal of up to 10km (Dique et al. 2003c). Dispersal is usually undertaken by sub-adult 

koalas in the pre-mating and early mating period of the breeding season from June to December, 

with high mortality rates reported for koalas in urban and peri-urban areas (Dique et al. 2003c, 

Rhodes et al. 2011).   

 

Koalas move across the ground (rather than through the canopy) to forage, find mates, or disperse 

to new habitats outside their home range (Martin and Handasyde 1999), but this is also when they 

are risk of mortality from threats such as dog attacks and vehicle collisions. Therefore, habitat loss 

and fragmentation may have the combined effect of reducing the amount of habitat, but also 

increasing the amount of time koalas must spend moving on the ground at risk from a range of 

threats. Therefore, the structure and permeability of the landscape appears to be an important 

driver of koala occurrence (McAlpine et al. 2006b, Rhodes et al. 2006, McAlpine et al. 2008, 

Rhodes et al. 2008) and movement (Dudaniec et al. 2013).  

 

The population dynamics of koalas are also impacted by disease and can make up a major 

component of overall mortality (Rhodes et al. 2011). Of particular concern is persistent chlamydial 

infection, which is often prevalent at high levels in koala populations and can cause irreversible 

infertility in females (Polkinghorne et al. 2013). The health consequences of other pathogens 
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known to infect koalas, including koala retrovirus (Hanger et al. 2000) and trypanosomes (McInnes 

et al. 2009, McInnes et al. 2011a, McInnes et al. 2011b) are not well understood.  
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4. PROJECT SCOPE 
 

4.1 Project commissioning 
This project was commissioned by the Queensland Department of Environment and Heritage 

Protection (EHP) to analyse data from the South East Queensland (SEQ) Koala Survey Program 

and to receive an independent assessment of the conservation status of the koala in the seven 

Local Government Areas (LGAs) of Moreton Bay Regional Council, Noosa Shire Council, Ipswich 

City Council, Brisbane City Council, Redland City Council, Logan City Council and Gold Coast City 

Council.  

 

A team from The University of Queensland (UQ), led by Associate Professor Jonathan Rhodes 

from the School of Geography, Planning and Environmental Management (GPEM), was awarded 

the contract for the analysis (Request for Quotation #EHP1418). The project commenced on 27 

October 2014. 

 

4.2 Aims and objectives 
The aim of this project was to determine the conservation status of the koala populations in seven 

eastern LGAs of SEQ, comprising Moreton Bay Regional Council, Noosa Shire Council, Ipswich 

City Council, Brisbane City Council, Redland City Council, Logan City Council and Gold Coast City 

Council. At the time of the commissioning of the project, no survey data were available for the 

Sunshine Coast Regional Council. 

 

The primary activities to be conducted to address the aims were to develop: 

1) a spatial model of koala relative densities across the eastern LGAs of SEQ; and 

2) models of koala trends where time series data were available. 

 

The specific objectives related to the deliverables were: 

• Information on relative density (potentially including detection error and occupancy) using 

the Queensland Government koala survey data, and appropriate data for covariates; 

• Information on trends in populations using the Queensland Government koala survey data, 

and appropriate data for covariates; 

• Appropriate model validation; 

• Maps of predicted relative density (with 95% confidence interval estimates) across each of 

the LGAs;  

• A report that includes appropriate descriptions of relationships with density, trends, data, 

models and maps; and 
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• If applicable, any recommended changes or improvements to the Queensland 

Government koala survey program, and any data or analyses produced in undertaking the 

project. 

 

4.3 Tasks and deliverables 
The project requirements specified by EHP identified the following tasks and deliverables.  

 

Tasks to be performed 

The tasks to be performed included: 

• Identify suitable models that are proven in the literature to provide robust estimates of 

population parameters and trend; 

• Develop information on relative density (potentially including detection error and 

occupancy) and trends in population using the Queensland Government koala survey data, 

and appropriate remote sensing data; 

• Perform appropriate model validation; and 

• The development of maps and reporting on predicted density/likelihood across each of the 

LGAs and population trends in two LGAs. 

 

Deliverables 

The deliverables of the projects were:  

• Information on relative density (potentially including detection error and occupancy) using 

the Queensland Government koala survey data, and appropriate data for covariates;  

• Information on trends in populations using Queensland Government koala survey data, and 

appropriate data for covariates; 

• Appropriate validation; 

• Maps of predicted relative density/likelihood across each of the LGAs;  

• A report including appropriate descriptions of relationships with density, trends, data, 

models and maps; and 

• If applicable, any recommended changes or improvements to the Queensland Government 

koala survey program, and any data or analyses produced in undertaking the project. 

 

A major task identified at the commencement of the project was the need to compile, clean and 

organise the Queensland Government koala survey data to facilitate statistical analysis. This 

necessitated developing a completely new relational database from the source data which 

were supplied in several Excel worksheets together with access to the raw field data sheets. 
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5. STUDY AREA 
 

The study area was the eastern portion of the South East Queensland planning region and is 

comprised of eight LGAs. However, because no koala survey data were available for the Sunshine 

Coast Regional Council area, the modelling was conducted using data from only seven LGAs: 

Moreton Bay Regional Council, Noosa Shire Council, Ipswich City Council, Brisbane City Council, 

Redland City Council, Logan City Council and Gold Coast City Council. 

 

The study region (Figure 1) covers an area of almost one million hectares (9,700km2) and contains 

one of the largest and most significant koala populations in Australia (Melzer et al. 2000). High 

fertility lowland alluvials, deep red soils and consolidated sediment in the east give way to the low 

fertility, shallow metamorphic soils of the D’Aguilar mountain range on the western boundary of the 

study region (Young and Dillewaard 1999). Approximately 35% of the region is remnant vegetation 

dominated by eucalypt woodlands and open forests, with moist forests and rainforests in higher 

rainfall areas with heaths and melaleuca communities near the coast. The major remnant regional 

ecosystems include: 

• 12.11.5 Corymbia citriodora subsp. variegata, Eucalyptus siderophloia, E. major open 

forest on metamorphics +/- interbedded volcanics (47,000ha); 

• 12.11.3 Eucalyptus siderophloia, E. propinqua +/- E. microcorys, Lophostemon confertus, 

Corymbia intermedia, E. acmenoides open forest on metamorphics +/- interbedded 

volcanics (42,000ha); 

• 12.9-10.2 Corymbia citriodora subsp. variegata +/- Eucalyptus crebra open forest on 

sedimentary rocks (22,000ha); 

• 12.12.15 Corymbia intermedia +/- Eucalyptus propinqua, E. siderophloia, E. microcorys, 

Lophostemon confertus open forest on Mesozoic to Proterozoic igneous rocks (22,000ha). 

The mountain ranges in the west extend to elevations of 750 m and are heavily forested with 

rainforest that is not suitable habitat for koalas and forms an ecological barrier that has reduced 

gene flow between koala populations on either side of this range (Lee et al. 2010). The southern 

boundary is the watershed that forms the border with New South Wales on the edge of the ancient 

Tweed shield volcano. 

 

In contrast to the forested mountain ranges to the west and south, the coastline to the east is 

fringed by densely populated urban centres. These areas are experiencing rapid human population 

growth associated with increased urbanisation and the process of development has resulted in the 

loss and fragmentation of koala habitat (Seabrook et al. 2003, Queensland Government 2009, 

Department of Science Information Technology Innovation and the Arts 2014). Many koala 

populations also face high levels of mortality associated with disease, vehicle collisions and dog 

attacks (Dique et al. 2003d, Rhodes et al. 2011). Lack of a clear quantitative understanding of the 
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consequences of these pressures on koala populations highlights the need to be able to map koala 

distributions relative to the key threats, quantify any trends in koala populations over time, and 

identify the determinants of koala distributions and trends.  
 

 

Figure 1. Survey site locations (circles) colour coded by the number of surveys (single survey or 
more than one survey). The sizes of the circles are proportional to the average survey effort (i.e. 
area surveyed) per survey (1996–2015).  
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6. SOUTH EAST QUEENSLAND KOALA MONITORING DATA 
 

The Queensland Government has been monitoring koalas in South East Queensland for around 20 

years and in this time has amassed considerable data on koala distribution, density and 

demographic parameters  (Dique 2004, Thompson 2006, Preece 2007, de Villiers 2015). The first 

regional surveys of koalas were conducted in the “Koala Coast” region (portions of Redland City 

Council, Brisbane City Council and Logan City Council LGAs) between 1996 and 1999 (Dique 

2004). Subsequent major surveys occurred in 2005–2006, 2008, 2010, and 2012, to monitor trends 

in koala numbers. Minor surveys of three sites in the Koala Coast were conducted nearly every 

year between 1996 and 2013. In 2001, with funding support from Pine Rivers Shire Council, 

surveys were expanded to include the then Pine Rivers Shire Council, now a district within Moreton 

Bay Regional Council (Dique et al. 2003a, Dique et al. 2003b). Follow-up surveys in Pine Rivers 

were conducted in 2011 and 2013 by EHP to monitor trends in the koala population.  

 

In December 2008, the Queensland Government announced a Koala Response Strategy to 

recover koala populations in South East Queensland and in August 2010 the koala surveys were 

expanded to a five year program encompassing the eastern LGAs of South East Queensland. As 

part of this commitment, the Threatened Species Unit, EHP has been surveying populations of 

koalas to establish information about the distribution, population size, and long term trends of koala 

populations in eight LGAs: Moreton Bay Regional Council, Sunshine Coast Regional Council, 

Noosa Shire Council, Ipswich City Council, Brisbane City Council, Redland City Council, Logan 

City Council and Gold Coast City Council. 

 

6.1 Koala survey sites and survey methods 
A major component of this project was compiling, checking, correcting, and formatting the koala 

survey data and associated spatial data to ensure adequacy for modelling. Koala count data from 

the systematic surveys were originally supplied in several Excel worksheets and had to be pre-

processed to: resolve discrepancies in and remove duplicate records, correct errors and enter 

some data (often by referencing raw field data sheets), and to collate and organise the data into a 

relational format prior to analysis. Spatial representations of the survey transects also had to be 

generated from GPS coordinates.  

 

Site selection 

The site selection process varied over time with three different approaches implemented at 

different times and in different regions. The first approach used between 1996 and 2011 for the 

Koala Coast was based on satellite land cover classification and potential koala habitat strata as 

outlined by Dique et al. (2004).  
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The second approach used primarily between 2012 and 2013 for Moreton Bay Regional Council, 

Noosa Shire Council, Ipswich City Council, Logan City Council and the Gold Coast City Council 

was a modification of the Dique et al. (2004) approach that could be undertaken without the use of 

a classified satellite image. The third approach used between 2014 and 2015 for Brisbane City 

Council adopted a new methodology based on randomly sampling mapped koala habitat. 

 

In the initial Dique et al. (2004) approach, potential koala habitat strata were derived from a 

Landsat image classification that discriminated forest, urban and grass land cover classes for the 

Koala Coast. Subsequently, in the absence of a classified image for other areas, the approach was 

modified to use a visual assessment of forest and urban land cover using GIS data (including 

Google Earth, etc.). These approaches enabled the study area to be stratified into four broad koala 

habitat strata consisting of: 

1) Bushland habitat – forest land cover patches larger than 100ha in the non-urban zone; 

2) Remnant bushland habitat – smaller isolated forest land cover patches, generally10–100 

ha, in the urban zone; 

3) Urban habitat – suburban small-lot development and some small forest patches (usually 

less than 10ha); and 

4) Non-habitat – areas where koalas are generally not present, such as grass, rainforest 

and impervious surfaces (industrial, high development density urban areas, roads, parking 

areas, etc.). 

 

Sites were then located in each of these potential habitat strata, but no sites were located in the 

non-habitat stratum. Site size varied depending on the stratum and the size of the forest patches, 

with the mean size being approximately 50ha (range 7–900ha). Usually the smaller sites were 

located in the urban areas and the larger sites were protected areas of forest, such as national 

parks.  

 

In the approach used for the Brisbane surveys between 2014 and 2015, koala survey sites were 

randomly selected from six of the nine habitat classes delineated in the “South East Queensland 

Koala Habitat Assessment and Mapping Project” (www.ehp.qld.gov.au/wildlife/koalas/mapping). 

This mapping was completed in May 2009 by private consultants GHD, on behalf of the 

Queensland Government and contained a total of nine habitat classes, comprising three habitat 

value rankings (high, medium, and low) for each of three habitat categories: 

1) Bushland - forested or woodland areas where koalas occur, or have the potential to 

occur, and regarded as the most important habitat for koalas; 

2) Suitable for rehabilitation - generally cleared land that lacks closed canopy forest or 

woodland, that if rehabilitated would have the potential to provide important habitat for 

koalas;  

http://www.ehp.qld.gov.au/wildlife/koalas/mapping
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3) Other areas of value - generally urban landscapes where koalas occur, or have the 

potential to occur and may include fragmented patches of bushland, parklands, schools and 

suburban backyards. 

After dividing Brisbane into 36ha grid squares (600m by 600m) a total of 58 sites (each 36ha in 

size) were randomly selected from the six ‘Bushland high/medium/low’ and ‘Other Areas of value 

high/medium/low’ classes. No sites were located in the ‘Suitable for rehabilitation high/medium/low’ 

classes. Generally, half the site (18ha) was searched using strip transects, although some total 

counts were conducted in urban areas. Some sites overlapped previously established sites in the 

Brisbane portion of the Koala Coast. 

 

Survey methods 

Koala surveys were conducted using one of three methods: strip transects, total counts (all of area 

searches), and line transects. Strip transects were long narrow plots of known area with the aim of 

counting all koalas seen within the boundary. Total counts (all of area searches) consisted of 

counting all individuals seen in a known area (of non-specific shape). Line transects involved 

walking along a line and recording the perpendicular distance from the line to each animal sighted 

(Buckland et al. 2001). We describe each of these survey methods below.  

 

Strip transects 

Strip transects, with fixed boundaries were established in bushland areas to sample a diversity of 

vegetation types across the landscape. Boundaries were fixed using survey pegs with locations 

established using differential GPS. Each strip transect was typically 60m wide with five trained 

observers spaced 15m apart walking a fixed bearing (using a sighting compass) and searching all 

trees for koalas with the aid of binoculars. All koalas observed were recorded, but koalas detected 

outside the boundary of transects were not included in the analysis. Transects varied in length 

depending on the site and terrain but were typically 400m long.  

 

The first transect at a survey site was randomly located between 1m and 60m from the edge of the 

site. Each subsequent transect was spaced parallel to the initial transect at intervals corresponding 

to multiples of 60m, with the objective of uniformly sampling approximately 30% of each site in 

order to maintain precision (Dique et al. 2001). Sampling intensity was generally higher for smaller 

sites, typically those sites less than 40ha in size. Sampling intensity was also higher for higher 

density sites in order to optimise precision as determined by Dique et al. (2001).  

 

Total counts (all of area searches) 

Urban sites, typically 90ha in size, were systematically searched using teams of up to 16 

observers. When volunteers were used, care was taken to ensure that each volunteer was paired 

with an experienced observer. Searches were undertaken of individual trees in yards and small 

areas of parkland or small patches of bushland (less than 10ha in size) within the urban matrix of 
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the site. Access to individual properties was made (with the owner’s permission) where possible, 

otherwise searching was done from the street using binoculars (Dique 2004). All koalas observed 

were recorded. 

 

Line transects 

Line transects were established at bushland sites across the Moreton Bay region (Dique et al. 

2003b). The first line within each site was located at a random starting point, but in a direction 

aimed to sample a variety of vegetation communities and topography within the landscape. Each 

additional line was located parallel to the first line with a 150 m “spacer” transect at right angles 

separating each line, typically resulting in “U-shaped” transects. The 150 m spacer distance was 

used to minimise the potential for double counting from adjacent lines and was based on a pilot 

survey that showed most koalas were sighted within 50m of the transect line. Searching the 

spacers maximised the use of time spent in the field but also meant that the search intensity varied 

slightly where a transect met a spacer (i.e., intensity was slightly higher for a short distance, less 

than 50m, on the inside and slightly lower on the outside edge). This would be expected to have 

minimal effect on the density calculations because care was taken to ensure that no koala was 

double counted. The length of the line transects varied according to the site characteristics, such 

as the patch size, shape, forest structure and terrain, but were typically 800m long. 

 

Each line transect was walked by two experienced observers using binoculars to assist in 

searching. One observer (the navigator) used a compass to navigate the line, while the second 

observer was free to move a few metres either side of the line to optimise koala detection and 

avoid obscuring vegetation. Care was taken to thoroughly search trees on or close to the transect 

line to ensure that the detection probability along the line was as close to one as possible 

(Buckland et al. 2001). The second observer rarely moved more than a few metres from the line to 

ensure that the detectability of koalas further away was not increased. 

 

When a koala was detected, it was recorded and the perpendicular distance from the line was 

measured to the point vertically below the koala with a 50m measuring tape. Additional information 

relating to the GPS location, tree, and koala were also recorded. 

 

Timing of surveys 

Koala surveys (counts) were initially planned to take place twice per year, commencing in February 

and six months later commencing in August. The survey timing in August was important because 

at that time of the year koala joeys were still dependent, with their mothers as either back young or 

pouch young, and large enough to be detected by observers from the ground using binoculars if 

necessary. The presence of observable young made it possible to estimate the proportion of adult 

females breeding and to monitor trends in breeding rates over time (although this data was not 

used in this report). In 2010, when the survey program was expanded to include sites outside the 
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Koala Coast and Pine Rivers, it became necessary to conduct surveys in all months of the year in 

order to fully utilise staff resources.  

 

However, to maintain consistency with previous years, surveys in the Koala Coast and Pine Rivers 

were scheduled to be undertaken during the same months as in previous surveys, although this did 

not always occur. Overall, surveys were conducted in most months of the year, with 65% 

conducted from August to December and 17% in February to March. 

 

6.2 Data summary 
A total of 249 sites were systematically surveyed across the seven LGAs, with a total transect area 

of 23,262ha (assuming an effective strip width of approximately 70m (Dique et al. 2003a)) and 

3,426 independent adult koalas detected across all years (Table 1). In the Koala Coast and Pine 

Rivers, 61 sites were systematically surveyed with a total transect area of 15,761 ha and 3,262 

independent adult koalas were detected (Table 2).  

 

Table 1. Summary of koala surveys conducted within each local government area. 

Local 
Government Area 

(LGA) 

 
Number of Sites 

 
Transect Area 

(ha) 

Number of 
Koalas* 

Detected 
Brisbane 66 3216 639 

Gold Coast 26 1275 50 
Ipswich 25 1078 36 
Logan 29 2234 272 

Moreton Bay 52 3816 339 
Noosa 26 1535 7 

Redland 25 10107 2083 
Total 249 23262 3426 

*Independent adult koalas excludes pouch young and dependent juveniles 

 
Table 2. Summary of koala surveys conducted within the Koala Coast and Pine Rivers. 

Survey Region Number of 
Sites 

Transect Area 
(ha) 

Number of 
Koalas* 

Detected 
Koala Coast 37 13336 2963 
Pine Rivers 24 2425 299 

Total 61 15761 3262 
*Independent adult koalas excludes pouch young and dependent juveniles 

 

Some sites in the Koala Coast and Pine Rivers were surveyed multiple times over 19 years with 

five major surveys in the Koala Coast (1996–1999, 2005–2006, 2008, 2010 and 2012) and three 

major surveys in Pine Rivers (2001, 2011, and 2013). Minor surveys of three sites in the Koala 

Coast (Ney Road, Gravel Reserve, and Burbank) were conducted nearly every year. However, 
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overall, a small proportion of 249 sites were surveyed in multiple years over this time, with only 

baseline (single) surveys conducted at the majority of sites within SEQ (Figure 1, Appendix A). 
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7. STATISTICAL METHODS 
 

We aimed to develop statistical regression models that were capable of: 

1) predicting relative koala density spatially across the study area; and 

2) quantifying trends in relative koala density over time in the Koala Coast and Pine Rivers.  

 

In doing so, there were some unique challenges in the data that had to be overcome, including: 

1) the use of multiple survey methods (i.e. strip transects, all of areas searches and line 

transects) and multiple observers; 

2) irregularly spaced sampling through time; and  

3) the presence of detection error (i.e. the probability of failing to observe a koala that is 

present). 

 

Dealing with these issues appropriately requires advanced statistical techniques that are explicit 

about observation processes (i.e. the process of observing koalas) and ecological processes (i.e. 

the factors that determine koala abundance). 

 

All field survey data of animal populations contain errors. These errors arise from two main 

sources, namely, process error and observation error (Ahrestani et al. 2013). Process error 

describes random variation in animal abundance driven by ecological factors such as variation in 

habitat, weather/climate, and animal movement. Observation error, on the other hand, describes 

the imperfect measurement of animal abundance through field surveys because the true 

abundance of a species at a site is rarely directly observed. An example of observation error is the 

failure to detect an animal that is actually present at a site because it is simply missed by chance 

(known as a false negative). Importantly, observation error can depend on a range of factors, 

including the type of habitat and the skill and experience of the observers. Given these two distinct 

sources of error, obtaining unbiased estimates of abundance depends critically on being able to 

represent each source explicitly in statistical models developed using survey data (Tyre et al. 

2003). 

 

Models known as state-space models are currently the state-of-the-art statistical approach for 

dealing with this and explicitly representing both observation and process error (Buckland et al. 

2004, Clark and Bjornstad 2004, Royle 2004, Dennis et al. 2006, Royle and Dorazio 2008, Dail and 

Madsen 2011, Knape and De Valpine 2012, Hostetler and Chandler 2015). These models can be 

formulated to allow for multiple survey methods and observers and to allow for missing data. They 

are therefore ideally suited for addressing the major challenges of multiple survey methods, 

multiple observers and missing data that are inherent in the koala monitoring data.     
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First, we developed a model to predict the spatial distribution of koala densities using the entire 

koala monitoring data set. Then we developed a model of trends in koala densities for the sites 

situated in the Koala Coast and Pine Rivers. We were unable to develop a trend model for the 

entire region because outside of the Koala Coast and Pine Rivers there was insufficient replication 

through time. Below we describe the structure of each of these two models, the data that the 

models were fit to, including the response variables and covariates, the procedures used to fit each 

model to the data to estimate the parameters and how we conducted model selection and 

validation. 

 

7.1 Response data 
The response data for our regression models were the koala count data for each site. Prior to 

analysis, for each site, we arranged the counts of koalas into the discrete surveys and allocated 

each survey to six monthly intervals between 1996 and 2015. We chose six-monthly time-steps so 

that they broadly coincided with the koala summer breeding season (October–March) and the 

winter non-breeding season (April–September). The aim here was to account for any seasonal 

differences in abundance that may be present. There were 39 six-monthly time intervals between 

summer 1996 and summer 2015. We also associated, with each survey, the area surveyed (in 

hectares) for the strip transect and total count surveys and the transect length (in metres) for the 

line transect surveys. Finally, we linked the perpendicular distances with the line transect surveys 

they were recorded from. 

 

7.2 Covariate data 
Prior to model development an extensive process of compiling spatial covariates was undertaken. 

Covariates were selected to represent the characteristics within sites and the characteristics of the 

areas within buffers surrounding sites (see Table 3 for a list of the covariates and the rationale for 

their choice).  Covariates were chosen based on their hypothesised links with koala density and to 

represent biophysical, habitat and threat drivers of koala density. However, covariate data were 

also chosen based on their ability to be mapped consistently across the entire study region (to 

allow spatial predictions to be made) and likely to be available in the future (to allow the analysis to 

be updateable in the future as more monitoring data becomes available). Where possible we 

acquired year-specific datasets. All covariate data sets were prepared using a combination of 

ArcGIS (ESRI, Redlands, CA, USA) and the Geospatial Modelling Environment (GME) software 

(http://www.spatialecology.com/gme).  

 

For each site we calculated covariate values either within the site (to represent site scale 

processes) or within buffers surrounding the site (to represent broader landscape scale 

processes), or both. For the calculation of covariates within buffers surrounding each site we used 

a buffer size of 2.5km. This was chosen to be close to the median dispersal distance of around 

2km recorded for koalas in South East Queensland (Dique et al. 2003c).  

http://www.spatialecology.com/gme
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However, we found that covariates calculated within 1km and 5km buffers were highly correlated 

with covariates calculated at 2.5km, so we expect model results to be insensitive to the exact 

choice of buffer size. Although we did not specifically include measures of fragmentation (e.g., 

patch density, isolation, etc.) in our set of covariates, metrics of habitat amount tend to be highly 

correlated with measures of fragmentation (Fahrig 2003). Therefore, our covariates that were 

related to habitat amount calculated within the buffers around sites were also designed to reflect 

fragmentation effects.     
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Table 3. Model covariates for site level and context variables. 

Variable 
Category 

Variable  Site/Buffer Description Source data Rationale 

Physical Temperature† Site Annual maximum 
temperature (oC) for each 
year between 1996 and 
2015.  

Australian Water 
Availability Project 
(AWAP), 5km 
raster. 

High maximum summer temperatures have been found to 
be important determinants of koala mortalities and 
distributions (Lunney et al. 2012, Lunney et al. 2014, 
Santika et al. 2014). Hence maximum temperature may be 
a good indicator of where koalas occur in higher densities. 

Physical Rainfall† Site Annual precipitation 
(mm/year) for each year 
between 1996 and 2015.  

Australian Water 
Availability Project 
(AWAP), 5km 
raster. 

Rainfall is important for koalas as they are sensitive to 
drought (Seabrook et al. 2011). Drought affects the leaf 
moisture content and the nutrition of eucalypt leaves that 
are important for koala habitat quality (Moore et al. 2004). 

Physical Elevation Site Mean altitude (m). DEM v1.0 
Geoscience 
Australia, 
Commonwealth of 
Australia, 
1 second (~30m) 
raster. 

Low altitude areas area associated with some depositional 
flood plains and coastal lowlands that have higher fertility 
soils linked to higher koala densities (Crowther et al. 
2009). Elevation is also lined to temperature and rainfall. 

Physical Topographic 
Wetness 
 

Site Mean Topographic 
Wetness Index (TWI). 
This estimates the relative 
wetness within 
catchments. 

Australian Soil 
Resource 
Information System 
(ASRIS), 250m 
raster. 

Topographic wetness is an indicator of soil moisture 
available to eucalypt trees and influences the leaf moisture 
content available to koalas (Moore et al. 2010). This 
covariate was used instead of the more commonly used 
distance to water measure, which is likely to be a relatively 
crude measure of moisture availability.  

Physical Slope Site Mean slope (0-90 
degrees). 

DEM v1.0 
Geoscience 
Australia, 
Commonwealth of 
Australia, 
1 second (~30m) 
raster. 

Slope has an important indirect influence on koala 
occurrence and density because steeply sloping areas 
tend to have lower soil fertility and lower soil moisture 
(Crowther et al. 2009). 

Soil Soil clay Site Mean soil clay content 
(%). 

Australian Soil 
Resource 
Information System 
(ASRIS), 250m 
raster. 

High clay content is linked to increased water holding 
capacity and increased soil fertility which in turn influence 
foliar moisture and foliar nutrients (Moore and Foley 
2005). 
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Variable 
Category 

Variable  Site/Buffer Description Source data Rationale 

Soil Soil water Site Mean plant available 
water capacity of soil 
(mm). 

Australian Soil 
Resource 
Information System 
(ASRIS), 250m 
raster. 

The health of the tree canopy and foliar moisture and 
nutrients is dependent on available soil moisture. In dry 
seasons, koalas are dependent on leaf moisture content 
where they do not have access to free-standing water 
(Gordon et al. 1988, Ellis et al. 2010). Water holding 
capacity is the total amount of water a soil can hold at field 
capacity and therefore related to the available soil 
moisture.  

Soil Soil bulk 
density 

Site Mean soil bulk density 
(mg/m3). 

Australian Soil 
Resource 
Information System 
(ASRIS), 250m 
raster. 

Bulk density is the weight of soil in a given volume. Soils 
with a bulk density higher than 1.6 g/cm3 tend to restrict 
root growth and therefore may affect the nutritional quality 
of leaves for koalas.  

Soil Soil nitrogen Site Mean mass fraction of 
total nitrogen in the soil by 
weight (%).  

Australian Soil 
Resource 
Information System 
(ASRIS), 250m 
raster. 

Total nitrogen content of soils is the mass fraction of total 
nitrogen in the soil by weight and is a key soil attribute 
influencing the nutrient content of eucalypt trees (Cork 
1986). 

Soil Soil 
phosphorus 

Site Mean mass fraction of 
total phosphorus in the 
soil by weight (%).  

Australian Soil 
Resource 
Information System 
(ASRIS), 250m 
raster. 

Phosphorous is critical for the overall health of eucalypts, 
including the development of roots, stems, flowers and 
seeds and is vital for photosynthesis. Ullrey et al. (1981) 
found koalas preferred browse with higher phosphorus 
and potassium. 

Habitat Foliage 
projective 
cover (FPC) † 

Site & buffer Mean Foliage projective 
cover (FPC) calculated 
within sites and within 
2.5km buffers around 
each site (%) for years 
1999, 2001, and 2004 - 
2013. FPC is 
the percentage of ground 
area occupied by the 
vertical projection of 
foliage and is a measure 
of canopy closure.  

SLATS program, 
DNRM 30m raster. 

Koala populations occupying habitats with high Foliage 
Projective Cover have been shown to have a lower risk of 
extinction in NSW (Santika et al. 2014). 

Habitat Remnant Site & buffer For each 1:1,000,000 Version 8.0 regional The proportion of the landscape occupied by eucalypt and 
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Variable 
Category 

Variable  Site/Buffer Description Source data Rationale 

vegetation† Broad Vegetation Group 
(BVG) (Neldner et al. 
2014) containing eucalypt 
or melaleuca remnant 
vegetation, the 
percentage of each site 
and each 2.5km buffer 
around each site (%) 
covered by the BVG. 
Calculated for years 1997, 
1999, 2000, 2001, 2003, 
2005, 2006, 2007, 2009, 
and 2011. See Appendix 
B. 

ecosystems (RE), 
DSITIA. The 
positional accuracy 
of RE data, mapped 
at a scale of 
1:100,000, is 100 
metres. The map 
scale of 1:50,000 
applies to part of 
South-eastern 
Queensland.  

melaleuca forests and woodlands has been shown to be 
an important determinant of koala occurrence in Noosa 
Shire Council (McAlpine et al. 2006a) and elsewhere 
across its geographic range (McAlpine et al. 2008).  

Threat Lot density† Buffer Density of property 
parcels within a 2.5km 
buffer around each site 
(lots/ha) for years 1997, 
2002, 2003, 2004, 2006, 
2007, 2010, 2012, and 
2013. 

Department of 
Natural Resources 
and Mines (DNRM) 
digital cadastre 
(DCDB) (vector). 

Lot density is a measure of urban density, especially 
housing density. Habitats in high-density urban areas are 
highly transformed and have limited habitat resources for 
koalas. This covariate was only calculated within buffers to 
reflect the broader landscape-scale effects of urban 
density not captured by the habitat variables measured at 
the site scale. 

Threat Road 
density† 

Buffer Percentage of a 2.5km 
buffer around each site 
that is road (%) for years 
1997, 2002, 2003, 2004, 
2006, 2007, 2010, 2012, 
and 2013. 

Department of 
Natural Resources 
and Mines (DNRM) 
digital cadastre 
(DCDB) (vector). 

Road density has been shown to negatively influence 
koala occurrence in Noosa Shire, South East Queensland 
(McAlpine et al. 2005) and is also associated with 
increased road mortality (Dique et al. 2003d, Preece 
2007). This covariate was only calculated within buffers to 
reflect the broader landscape-scale effects of roads not 
captured by the habitat variables measured at the site 
scale. 

Other Season† - Two seasons. Breeding = 
Summer (Oct – Mar). 
Non-breeding = winter 
(Apr – Sept). 

- Seasonal variation in koala numbers has been reported by 
Dique et al. (2001) in the Koala Coast associated with 
changes in habitat utilization. In addition, there may be 
higher rates of koala mortality in winter months possibly 
linked to dispersal patterns (Dique et al. 2003c). Seasonal 
variation also linked to changes in fodder quality in some 
areas (Gordon et al. 1990, White and Kunst 1990, Melzer 
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Variable 
Category 

Variable  Site/Buffer Description Source data Rationale 

1995).  
Other Year† - Time series variable from 

1996 – 2015. 
- Year was used as a variable to model change through 

time. 
† Covariate represented by a time series. 
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7.3 Statistical models 
We developed two statistical models of koala density. The first model (the spatial model) was 

based on the entire koala monitoring data set that aimed to model the spatial distribution of koala 

density across the study area. The second model (the trend model) was based on the data from 

the Koala Coast and Pine Rivers only and aimed to model trends in koala density for those areas. 

The robust estimation of trends was possible only for the Koala Coast and Pine Rivers because 

these were the only areas where the data provided sufficient temporal replication. The two models 

are described in detail below.          

 

Spatial model 

The basis for the spatial model was a Bayesian state-space model with a process component 

describing the dynamics of the true koala densities (i.e., accounting for process error) and an 

observation component (i.e., accounting for observation error) that models the chance of missing 

koalas during searches based on an N-mixture model for the strip transect and total count surveys 

(Royle 2004, Dail and Madsen 2011, Hostetler and Chandler 2015) and based on Distance 

Sampling for the line transect surveys (Buckland et al. 2001, Gimenez et al. 2009). 

 

For the process model, true koala densities at each site and each 6-monthly interval (i.e., time-

step) were modelled as a function of spatial covariates such that 

 ( ) ( ), ,E exp T
i t i t iD Xβ η= + ,  (1) 

where ( ),E i tD  is the expected density of koalas at site i at time-step t, β  is a vector of 

coefficients, ,i tX  is a vector of covariates for site i at time-step t, and iη  is a normally distributed 

random-effect for site i (where ( )2~ Normal 0,i dη σ , with ~ signifying “distributed as”). Here the site 

level random-effect was included to account for the non-independence of repeat surveys within the 

same site (Rhodes et al. 2009). Then, stochastic variation in koala densities was allowed for by 

assuming that the actual (unobserved) koala densities, ,i tD , followed a gamma distribution, such 

that  

 ( ) ( ) ( )( ), ,1 10 1 1 10 1~ Gamma ,i t i tt tD a a E D− + − +      
,  (2) 

where ( )1 10 1ta − +  
 (   

 is the floor operator)  is the shape parameter for each five year block 

( )1 10 1t − +  (note that we divide by 10 here instead of five to get a five year interval because the time-

steps are six months in length rather than 12 months) and ( ) ( ),1 10 1 i tta E D− +  
 is the scale 

parameter for the gamma distribution. This parameterisation of the Gamma distribution ensures 

that the expectation of this distribution is ( ),i tE D . Here we allow the shape parameter to vary 

among five year blocks of time to account for any change in the distribution of densities over time.  
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More specifically we assumed that the shape parameter is described by a log-normally distributed 

random-effect where ( ) ( )2
1 10 1 ~ Log-normal , ata θ σ− +  

.      

 

The observation model for the strip transect and total count surveys accounted for the chance of 

failing to detect koalas based on information contained in repeat observations at the same sites 

(sensu Hostetler and Chandler 2015), and was as defined as follows 

 ( ), , , , ,~ Binomial ,i t r i t i t rN p D A ,  (3) 

where , ,i t rN  is the number of koalas observed at site i in time-step t during strip transect/total count 

survey r, , ,i t rA  is the area (in hectares) searched at site i in time-step t during survey r, and p is the 

probability of detecting a koala, given it is present at a site. Here, although there is likely to be 

variation in the probability of detecting a koala given it is present at a site, p, among observers and 

habitat types, a lack of replication across these factors limited the extent to which we could 

estimate these effects. Therefore we assumed that p was constant. 

 

For the line transects, the observation model used a model based on Distance Sampling to 

estimate a detection function from the recorded perpendicular distances and then applied this to 

estimate density at each site (Buckland et al. 2001, Gimenez et al. 2009). We evaluated six 

competing detection function models: the half-normal, uniform and hazard functions, each with and 

without cosine adjustment. The half-normal and hazard functions with no cosine adjustment were 

the top ranked models and performed similarly (a difference in AIC < 2). On the basis of parsimony 

we selected the half-normal distribution as it required one less parameter than the two parameter 

hazard function (Appendix C). Based on this we assumed that the perpendicular distances are 

distributed such that  

 ( )~ Half-normal 0,iS τ ,  (4) 

where Si is the perpendicular distance for observation i in metres, and τ  is the precision for the 

half-normal distribution. Then we assumed that the number of koalas observed at site i in time-step 

t during line transect survey r, , ,i t rN , was Poisson distribution such that 

 ( )
, , ,

, ,

2
~ Poisson

10000 0
i t r i t

i t r

L D
N

f
 
 
  ,  (5) 

where , ,i t rL  is the distance surveyed at site i in time-step t during line transect survey r in metres 

and ( )0 2f τ π= . We divide by 10000 here to convert from units of m2 to hectares. In this case, 

the detection information is contained in ( )0f  that is estimated from the perpendicular distances, 

with ( )1 0f  being the effective strip width (Buckland et al. 2001). As for p, we assumed that 

detection is constant across habitats and observers due to limited replication across these. 
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Trend model 

The trend model for the Koala Coast and Pine Rivers sites was essentially the same basic 

structure as the spatial model, but we explicitly modelled the temporal dynamics of the population 

at each site. This meant that the process model differed from the spatial model, but the observation 

model was identical. We describe the process model below. 

 

First of all, we assumed that the initial koala densities at each site in time-step 1 (i.e., summer 

1996) followed a random-effect such that 

 ( ) ( ),1E expi iD η= ,  (6) 

where ( ),1E iD  is the expected density of koalas at site i at time-step 1 and iη  is a normally 

distributed random-effect for site i (where ( )2~ Normal 0,i dη σ ). Here we do not include covariates 

for the initial density because we only want to control for the initial density (by simply estimating the 

initial density for each site) in the estimation of trends, rather than explaining the spatial distribution 

of abundances in time-step 1. 

 

However, where the model differs from the spatial model is that the expected densities in 

subsequent time-steps were assumed to be the result of exponential population growth (or 

decline), such that 

 ( ), , 1 , 1i t i t i tE D D r− −=
,  (7) 

where , 1i tr −  is the per time step population growth rate for site i at time-step t - 1. We ignored 

density dependence because most populations are expected to be well below carrying capacity 

(Rhodes et al. 2011). Then, , 1i tr −  was assumed to depend on covariates such that 

 ( ), 1 , 1exp T
i t i tr Yγ− −=

,  (8) 

where γ  is a vector of coefficients, and , 1i tY −  is a vector of covariates for site i related to time step 

t – 1. 

 

As for the spatial model, stochastic variation in koala densities was allowed for by assuming that 

the true koala densities, ,i tD , followed a gamma distribution, such that  

 ( ) ( ) ( )( ), ,1 10 1 1 10 1~ amma ,i t i tt tD G a a E D− + − +      
,  (9) 

where ( )1 10 1ta − +  
 is the shape parameter for each five year block ( )1 10 1t − +  and ( ) ( ),1 10 1 i tta E D− +  

 

is the scale parameter for the gamma distribution. Again, we assumed that the shape parameter is 

described by a log-normally distributed random-effect where 

( ) ( )2
1 10 1 ~ Log-normal , ata θ σ− +  

. 
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7.4 Model fitting 
Prior to model fitting, we arranged the count data into their separate surveys and then into the 

seasonal time-steps for each site (249 sites and 39 time-steps between summer 1996 and summer 

2015). Where there were no surveys within a time step for a site we coded that as missing data to 

be estimated from the model. We also arranged the areas searched for the strip transect and total 

count surveys and the transect lengths for the line transect surveys so that they were associated 

with each survey. We also arranged the perpendicular distances into a vector, but did not 

associate these with specific surveys for the analysis.   

 

Next we arranged the covariate data so that each covariate had a value associated with each of 

the 39 six monthly time-steps for each site (in so doing we assumed that the period October – 

December was associated with covariates for the following year). For the temperature, rainfall, lot 

density, road density, FPC, and remnant vegetation covariates that varied through time (Table 3), 

we extracted the covariate value associated with each year for each site and associated those 

values with the relevant site and time-step combination. For years where we did not have data, we 

used the value associated with the closest year where we did have data. Then, for those 

covariates we averaged the covariate values across all years for each site and used these average 

values to characterise the covariate values for each site. Although we could have matched time-

specific covariate values to each time-step, possibly with lags (e.g. Clark and Bjornstad 2004), 

given the sparseness of the surveys through time, even for the most frequently surveyed sites, and 

the unknown lags in the system, the most parsimonious approach was instead to characterise sites 

by their average covariate values over the whole survey period. However, this means that the 

covariates essentially represent spatial variation among sites rather than their temporal trends. For 

the soil and topographic covariates, which do not vary through time, we assigned the covariate 

value associated with each site to each site and time-step combination. Season (which we coded 

as summer = 0 and winter = 1) and year covariates were associated with each six monthly time-

step. 

 

For the remnant vegetation covariate, because there was insufficient survey replication across 

individual Broad Vegetation Groups, we grouped Broad Vegetation Groups in two different ways, 

which we then included as two alternative representations in the models. First, we grouped all 

Broad Vegetation Groups that contained eucalypt or melaleuca remnant vegetation into a single 

category (Appendix B).  

 

We subsequently refer to this as the “remnant vegetation (habitat)” covariate. Second we grouped 

Broad Vegetation Groups into ordinal ranks of habitat suitability based on the tree species present 

in each Broad Vegetation Group (Appendix B). This resulted in three ordinal categories of habitat 

suitability (high suitability, suitable, and low suitability) and the rationale for the classification is 
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explained in Appendix B. We subsequently refer to this as the “remnant vegetation (habitat 

suitability)” covariate.         

 

Prior to model fitting, collinearity between all continuous covariates was assessed using 

Spearman’s rank correlation and, when the correlation between two covariates was greater than 

0.6 or less than -0.6, either one covariate was removed, or one covariate was regressed on the 

other and the residuals used for one of the covariates to remove collinearity (Trzcinski et al. 1999, 

Rhodes et al. 2009). All remaining covariates, except for the categorical season covariate, were 

standardised to have a mean of zero and standard deviation of one. 

 

Models were fit to the data using Markov Chain Monte Carlo (MCMC) in JAGS (http://mcmc-

jags.sourceforge.net/) using the runjags package in R (www.r-project.org). The advantages of this 

approach are that it allows for the straightforward construction of the non-standard models 

developed here and naturally deals with the problem of missing data, specifically the unobserved 

true koala densities and missing data in time-steps where surveys were not conducted (McCarthy 

2007). We assumed Normal (0,0.001) priors for the β  and γ  coefficients and θ , a Gamma 

(0.001,0.001) prior for τ , Uniform (0,10) priors for the variance components dσ  and aσ , and a 

Uniform (0,1) prior for p. These were chosen to be largely uninformative priors. We simulated three 

MCMC chains using over-dispersed starting values and a burn-in of 40,000 iterations and then 

retained 100,000 iterations per chain. Convergence was assessed using the Gelman and Rubin 

convergence statistic (R-hat) (Gelman and Rubin 1992). See Appendix D for the JAGS code for 

both the spatial and trend models. 

 
7.5 Model selection 
The Deviance Information Criterion (DIC) is widely used for model selection for complex Bayesian 

models fitted using MCMC (Spiegelhalter et al. 2002, Celeux et al. 2006). However, for state-space 

models the use of DIC may be problematic unless DIC can be calculated using the marginal 

likelihood with the latent (unobserved) variables integrated out (Millar 2009). Due to the complexity 

of calculating the marginal likelihood for our models and because the purpose of these models is 

primarily prediction, we instead used V-fold cross validation for model selection (Arlot and Celisse 

2010). In conducting the V-fold cross validation we evaluated observed koala counts against the 

mean predicted counts across 100 replicates for the spatial model and 50 replicates for the trend 

model (fewer replicates for the trend model due to computational constraints) and leaving out 

approximately 20% of the data in each replicate (110 surveys for the spatial model and 71 surveys 

for the trend model).  

 

We used a loss function, which increases in value as predictive performance declines, defined as 

the square root of the mean squared differences between the observed koala counts and the mean 

http://mcmc-jags.sourceforge.net/
http://mcmc-jags.sourceforge.net/
http://www.r-project.org/
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predicted counts and identified the model with the smallest loss as the best model. Cross-

validation was conducted using the drop.k function in the runjags package in R, using a target 

Gelman and Rubin convergence statistic (R-hat) of 1.1 to determine convergence.          

 

For the spatial model we found collinearity between: 

1) FPC and buffer FPC; 

2) FPC and remnant vegetation (habitat); 

3) FPC and remnant vegetation (habitat suitability) - low suitability class; 

4) buffer FPC and buffer remnant vegetation (habitat); 

5) elevation, slope and topographic wetness index; 

6) soil bulk density and soil clay content; and 

7) lot density and road density. 

 

Consequently, we removed buffer remnant vegetation, slope, topographic wetness index, soil bulk 

density and lot density to deal with collinarity in these variables. To deal with collinarity in the other 

variables but to still retain them, logit(buffer FPC + 0.01) was regressed on FPC, logit(remnant 

vegetation (habitat) + 0.01) was regressed on FPC, and logit(remnant vegetation (habitat 

suitability) - low suitability class + 0.01) was regressed on FPC  with the residuals used instead of 

buffer FPC, remnant vegetation (habitat), and remnant vegetation (habitat suitability) - low 

suitability class, respectively (Trzcinski et al. 1999).  

 

For the trend model, collinearity among variables was similar, but we found high levels of 

collinearity between:  

1) soil clay and soil phosphorous; 

2) temperature and rainfall; and 

3) soil water availability and road density. 

 

To deal with this, in addition to the measures taken for the spatial model, we removed soil 

phosphorous and temperature, and logit (road density + 0.01) was regressed on soil water with the 

resulting residuals used instead of road density.     

 

For both models we first considered a model with all covariates included as predictors (and 

including the remnant vegetation (habitat suitability) classification, rather than remnant vegetation 

(habitat) classification), plus quadratic terms for FPC and road density to allow for possible non-

linear effects in those variables. We then classified covariates into physical variables, soil 

variables, habitat variables, and threat variables (Table 3). 

 

Based on this, we then constructed simplified models based on reducing the number of variables 

within the physical, soil and habitat classes. For the physical class, simplification consisted of only 
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including elevation which is likely to be a good proxy for physical drivers of koala density. For the 

soil class, simplification consisted of only including soil water and soil nitrogen based on the likely 

importance of these two variables for koalas (Table 3).  

 

For the habitat class, simplification consisted of including the remnant vegetation (habitat) 

classification rather than the more complex remnant vegetation (habitat suitability) classification. 

Alternative models were constructed based on all combinations of the above simplification 

strategies (eight models in total) and the best model identified based on the V-fold cross-validation. 

Then the quadratic terms for FPC and road density were removed from the best model and that 

model was then evaluated using the V-fold cross-validation to examine whether the quadratic 

terms improved model performance. Season and year were included in all models. Based on this 

strategy we evaluated nine alternative model structures for the spatial and trend models. 

            

7.6 Model adequacy and validation 
 We assessed model adequacy and validated the models using a number of strategies. First, we 

plotted spatial spline correlograms (Bjørnstad and Falck 2001) on the model residuals to test for 

the presence of any spatial autocorrelation that may invalidate statistical tests. Spline correlograms 

were constructed using the package ncf in R (www.r-project.org). Second, quantile-quantile plots 

were constructed to examine departures from the distributional assumptions of the model, 

including any zero-inflation that may be present (Landwehr et al. 1984, Rhodes 2015). Third, we 

conducted posterior predictive checks to check for significantly poor model fit based on the 

Pearson χ2 statistic as a measure of fit (Gelman et al. 2004). Finally, we compared predictions 

obtained from the V-fold cross-validation with the actual survey data to validate the predictive 

performance of the models.                

 

7.7 Model predictions 
We generated spatial predictions of the expected koala density based on the spatial model at a 

resolution of 50ha hexagonal grid cells across the study region. We chose a resolution of 50ha 

because this is the approximate mean size of the surveyed sites and we wanted to match the 

resolution of the spatial predictions with the resolution of the data. However, model selection based 

on cross-validation can favour models that are over-fit (i.e., complex models that are fit too closely 

to error in the data and have low ability to predict outside of the range of the data used to fit the 

models) (Zhang 1993). Therefore, to ensure that predictions were not made for grid cells with 

covariate values well outside the range of the covariate values at the survey sites, we only made 

predictions for grid cells with covariate values within the range of covariate values for the survey 

sites for elevation, FPC, FPC buffer, and road density. We also made predictions for the expected 

change in the average density of koalas at the survey sites in Pine Rivers and the Koala Coast 

based on the trend model.      

http://www.r-project.org/
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8. RESULTS 
 

8.1 Spatial model 
MCMC chain convergence for the spatial models was good (R-hat < 1.05) for all model fits 

(Gelman and Rubin 1992). The best model out of the initial eight models, based on the cross-

validation performance, was the model with simplified soil and habitat variables (Table 4). 

Removing the quadratic term for FPC and road density resulted in a slight loss of model 

performance, but the resulting model was still the second best performing mode (Table 4). For the 

best model, the agreement between the predicted and observed koala counts was high, with a 

Pearson’s correlation coefficient of around 0.88 (Table 4 and Figure 2).  Further, in only 5% of the 

surveys did the 95% credible intervals of the cross-validation predictions not include the true koala 

count in more than 20% of the cross-validation replicates. Therefore cross-validated model 

performance was very good. Examination of the quantile-quantile plots revealed relatively good 

agreement between the distributional assumptions of the model and the data, although there was 

some sign of under-dispersion in the data relative to the model (Appendix D). Nonetheless, there 

was no sign of significant lack of fit based on the posterior predictive checks (p = 0.84). Therefore, 

model fit was reasonably good.   
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Table 4. Competing spatial model comparisons based on the V-fold cross validation. “Pearson’s 
correlation” is the Pearson’s correlation coefficient between the predicted and observed koala 
counts and “Loss score” is the mean squared difference between the predicted and observed 
koala counts. The two best models are highlighted in bold.  

Model Pearson’s 
correlation 

Loss 
score 

(1) rainfall + temperature + elevation + soil water + soil clay + soil nitrogen + 
soil phosphorous + FPC + buffer FPC + remnant vegetation (habitat 
suitability) + road density + FPC2 + road density2 +  season + year 

0.87 21.84 

(2) elevation + soil water + soil clay + soil nitrogen + soil phosphorous + FPC 
+ buffer FPC + remnant vegetation (habitat suitability) + road density + FPC2 + 
road density2 +  season + year 

0.86 24.79 

(3) rainfall + temperature + elevation + soil water + soil nitrogen + FPC + 
buffer FPC + remnant vegetation (habitat suitability) + road density + FPC2 + 
road density2 +  season + year 

0.87 21.74 

(4) rainfall + temperature + elevation + soil water + soil clay + soil nitrogen + 
soil phosphorous + FPC + buffer FPC + remnant vegetation (habitat) + road 
density + FPC2 + road density2 +  season + year 

0.88 21.20 

(5) elevation + soil water + soil nitrogen + FPC + buffer FPC + remnant 
vegetation (habitat suitability) + road density + FPC2 + road density2 +  season 
+ year 

0.87 21.93 

(6) rainfall + temperature + elevation + soil water + soil nitrogen + FPC + 
buffer FPC + remnant vegetation (habitat) + road density + FPC2 + road 
density2 +  season + year 

0.88 20.07 

(7) elevation + + soil water + soil clay + soil nitrogen + soil phosphorous + 
FPC + buffer FPC + remnant vegetation (habitat) + road density + FPC2 + 
road density2 +  season + year 

0.86 23.73 

(8) elevation + soil water + soil nitrogen + FPC + buffer FPC + remnant 
vegetation (habitat) + road density + FPC2 + road density2 +  season + year 

0.88 21.57 

(9) rainfall + temperature + elevation + soil water + soil nitrogen + FPC + 
buffer FPC + remnant vegetation (habitat) + road density +  season + 
year 

0.88 20.28 
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Figure 2. Relationship between the predicted koala counts derived from the V-fold cross 
validation and the observed koala counts for the best spatial model (model 6). The dotted line 
shows the 1:1 relationship.   

 

In terms of the effects of each of the covariates on koala density derived from the best spatial 

model, many of the effects (i.e. the model coefficients) for the covariates were not significantly 

different from zero (Table 5). The coefficients that were significantly different from zero were 

rainfall (negative), temperature (negative), FPC buffer residuals (negative), and year (negative). 

These indicate significant negative relationships between koala density and rainfall, temperature, 

and FPC buffer (after accounting for the relationship with FPC at the site scale), and a significant 

decline in density over time. The coefficients for FPC and remnant vegetation showed a positive 

association with koala density, but were not significantly different from zero. 

  

Surprisingly, the coefficient for road density was positive, although again not significantly different 

from zero, providing some suggestion of higher koala densities in areas with high road densities 

compared to areas with low road densities. However, because the quadratic terms for FPC and 

road density are negative, the highest koala densities are estimated to occur at intermediate levels 
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of FPC and road density. The probability of detecting a koala, given that it is present at a site, was 

estimated to be 0.67 (Table 5).      

 
Table 5. Parameter estimates for the best spatial model (model 6). 

Parameter Estimate (95% credible interval) 
Intercept 
Rainfall 
Temperature 
Elevation 
Soil water 
Soil nitrogen 
FPC 
FPC buffer residuals 
Remnant vegetation residuals (habitat) 
Road density 
FPC2 
Road density2 
Season 
Year 

-2.99 (-3.34, -2.67) 
-0.66 (-1.05, -0.26) 
-1.18 (-1.57, -0.78) 
-0.43 (-0.87, 0.02) 
0.11 (-0.10, 0.31) 
-0.22 (-0.60, 0.20) 
1.17 (-0.50, 2.81) 
-0.74 (-1.03, -0.47) 
0.19 (-0.06, 0.46) 
0.35 (-0.63, 1.32) 
-0.89 (-2.64, 0.83) 
-0.24 (-1.17, 0.68) 
-0.05 (-0.16, 0.07) 
-0.44 (-0.51, -0.38) 

Distance sampling parameter (τ) 1.36x10-3 (1.09x10-3, 1.64x10-3) 
Standard deviation of site random-effect 
(σd)  

1.15 (0.91, 1.40) 

Detection probability (p) 0.67 (0.54, 0.80) 
 

The predicted distribution of high koala density based on the best spatial model was concentrated 

in the coastal regions of South East Queensland from Moreton Bay southwards, but with some 

patches of high density predicted in the western parts of Moreton Bay Regional Council, Sunshine 

Coast Regional Council and Gold Coast City Council (Figure 3). However these areas of high 

density in the western regions had high levels of uncertainty associated with them, as indicated by 

their high coefficients of variation (Figure 3; also see Appendix F for the 95% credible intervals for 

the spatial distribution of koala densities).  

 

The highest densities of koala were predicted for Redland City Council, Moreton Bay Regional 

Council, the eastern part of Logan City Council, and Gold Coast City Council. Koala densities in 

Noosa Shire Council were generally predicted to be low. The predicted spatial patterns based on 

the second best spatial model were very similar (Appendix G).  
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Figure 3. The spatial distribution of expected koala densities based on the best spatial model 
(model 6) and the coefficient of variation for those densities. Maps were constructed at a 
resolution of 50ha, but excluding areas that were outside the range of covariate values at the 
surveyed sites for elevation, FPC, FPC buffer, and road density. See Appendix F for the 95% 
credible intervals for the spatial predictions.    

 

8.2 Trend model 
MCMC chain convergence for the trend models was good (R-hat < 1.05) for all model fits (Gelman 

and Rubin 1992). The best model out of the initial eight models, based on the cross-validation 

performance, was the full model containing all variables (Table 6). Removing the quadratic term for 

FPC and road density resulted in a slight loss of model performance suggesting that the quadratic 

terms are important predictors (Table 6). The second best model was the model with simplified 

physical and soil variables (Table 6). However, overall there was less distinction among models 

than there was for the spatial model (i.e. lower variation in loss scores). 

 

For the best model, the agreement between the predicted and observed koala counts was high, 

with a Pearson’s correlation coefficient of around 0.92 (Table 6 and Figure 4).  Further, in only 9% 

of the surveys did the 95% credible intervals of the cross-validation predictions not include the true 

koala count in more than 20% of the cross-validation replicates.  
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Therefore, cross-validated model performance was very good. Examination of the quantile-quantile 

plots revealed relatively good agreement between the distributional assumptions of the model and 

the data, although there was some sign of under-dispersion in the data relative to the model 

(Appendix D). Nonetheless, there was no sign of significant lack of fit based on the posterior 

predictive checks (p = 0.16). Therefore, model fit was reasonably good.   

 

Table 6. Competing trend model comparisons based on the V-fold cross validation. “Pearson’s 
correlation” is the Pearson’s correlation coefficient between the predicted and observed koala 
counts and “Loss score” is the mean squared difference between the predicted and observed 
koala counts. The two best models are highlighted in bold.  

Model Pearson’s 
correlation 

Loss 
score 

(1) rainfall + temperature + elevation + soil water + soil clay + soil 
nitrogen + soil phosphorous + FPC + buffer FPC + remnant vegetation 
(habitat suitability) + road density + FPC2 + road density2 +  season + 
year 

0.92 16.36 

(2) elevation + soil water + soil clay + soil nitrogen + soil phosphorous + FPC 
+ buffer FPC + remnant vegetation (habitat suitability) + road density + FPC2 + 
road density2 +  season + year 

0.91 18.45 

(3) rainfall + temperature + elevation + soil water + soil nitrogen + FPC + 
buffer FPC + remnant vegetation (habitat suitability) + road density + FPC2 + 
road density2 +  season + year 

0.91 18.19 

(4) rainfall + temperature + elevation + soil water + soil clay + soil nitrogen + 
soil phosphorous + FPC + buffer FPC + remnant vegetation (habitat) + road 
density + FPC2 + road density2 +  season + year 

0.91 19.77 

(5) elevation + soil water + soil nitrogen + FPC + buffer FPC + remnant 
vegetation (habitat suitability) + road density + FPC2 + road density2 +  
season + year 

0.92 17.58 

(6) rainfall + temperature + elevation + soil water + soil nitrogen + FPC + 
buffer FPC + remnant vegetation (habitat) + road density + FPC2 + road 
density2 +  season + year 

0.91 19.05 

(7) elevation + + soil water + soil clay + soil nitrogen + soil phosphorous + 
FPC + buffer FPC + remnant vegetation (habitat) + road density + FPC2 + 
road density2 +  season + year 

0.91 19.28 

(8) elevation + soil water + soil nitrogen + FPC + buffer FPC + remnant 
vegetation (habitat) + road density + FPC2 + road density2 +  season + year 

0.91 18.66 

(9) rainfall + temperature + elevation + soil water + soil nitrogen + FPC + 
buffer FPC + remnant vegetation (habitat) + road density +  season + year 

0.91 19.14 
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Figure 4. Relationship between the predicted koala counts derived from the V-fold cross 
validation and the observed koala counts for the best trend model (model 1). The dotted line 
shows the 1:1 relationship.   

 

In terms of the effects of each of the covariates on the growth rate of koalas derived from the best 

trend model, many of the effects (i.e. the model coefficients) for the covariates were, again, not 

significantly different from zero (Table 7). In fact, there were only three variables that were 

significantly different from zero: rainfall (negative), season (positive) and year (negative). This 

suggests that growth rates decline with increasing rainfall and also that growth rates have also 

declined over time. The strong seasonal effect implies that the growth rate between summer and 

winter was generally much lower than the growth rate between winter and summer. 
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Table 7. Parameter estimates for the best trend model (model 1). 

Parameter Estimate (95% credible interval) 
Intercept 
Rainfall 
Elevation 
Soil water 
Soil clay 
Soil nitrogen 
FPC 
FPC buffer residuals 
Remnant vegetation (habitat) – high suitability 
Remnant vegetation (habitat) – suitable 
Remnant vegetation residuals (habitat) – low suitability  
Road density residuals 
FPC2 
Road density residuals2 
Season 
Year 

-0.112 (-0.184, -0.038) 
-0.015 (-0.027, -0.002) 
-0.014 (-0.039, 0.010) 
-0.011 (-0.022, 0.001) 
0.012 (-0.002, 0.026) 
-0.006 (-0.024, 0.013) 
0.024 (-0.054, 0.111) 
-0.005 (-0.017, 0.008) 
-0.001 (-0.014, 0.012) 
0.004 (-0.028, 0.036) 
-0.013 (-0.058, 0.030) 
0.001 (-0.013, 0.015) 
-0.019 (-0.104, 0.067) 
-0.002 (-0.013, 0.010) 
0.146 (0.002, 0.282) 
-0.020 (-0.038, -0.002) 

Distance sampling parameter (τ) 1.29x10-3 (1.03x10-3, 1.58x10-3) 
Standard deviation of site random-effect (σd)  0.89 (0.63, 1.16) 
Detection probability (p) 0.49 (0.38, 0.60) 

 

Overall, koala densities at the survey sites in the Koala Coast and Pine Rivers declined between 

1996 and 2014, with the greatest declines occurring at the Koala Coast sites (Figure 5). The 

estimated mean decline in koala density at the Koala Coast sites between 1996 and 2014 was              

-80.25% (95% credible interval: -86.19% to -70.81%). On the other hand, the estimated mean 

decline in koala density at the Pine Rivers sites between 1996 and 2014 was -54.28% (95% 

credible interval: -74.42% to -20.10%). The estimated annual rate of change in density in the Koala 

Coast in 1996 was -1.93% (95% credible interval: -6.84% to +3.26%), but in 2014 it was -13.26% 

(95% credible interval: -19.44% to -6.49%), while in Pine Rivers, the estimated annual rate of 

change in the density in 1996 was +0.87% (95% credible interval: -5.77% to +8.01%) and -10.81% 

(95% credible interval: -16.53% to -4.52%)  in 2014 (Figure 6). This illustrates a likely acceleration 

in the rate of decline over time. 

 



Report For: Department of Environment and Heritage Protection 
Re: South East Queensland Koala Population Modelling Study 
 

 
UniQuest File Reference: C01932   Page 41 

 

 
Figure 5. Estimated mean koala densities at the Koala Coast and Pine Rivers sites between 1996 
and 2014. Red ticks at the tops of the graphs indicate years when surveys occurred.   
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Figure 6. Estimated mean annual percentage change in koala density at the Koala Coast and 
Pine Rivers sites between 1996 and 2015. Red ticks at the tops of the graphs indicate years 
when surveys occurred.    
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9. DISCUSSION 
 

This study draws together a unique long-term data set of koala counts to estimate koala densities 

and trends across South East Queensland for the first time. The models developed predict that the 

highest koala densities currently occur along the coastal regions of South East Queensland, and 

particularly in the central and southern coastal regions (Figure 3). There was strong evidence for a 

rapid decline in population densities between 1996 and 2014 in the Koala Coast (-80%) and Pine 

Rivers (-54%) and that the rate of decline has been increasing over time. Although it was not 

possible to estimate population trends for the whole of the region these population declines may 

well be indicative of patterns of population decline more broadly. 

 

Overall, across the region, the primary factors associated with the broad-scale distribution of koala 

densities appear to be climatic factors (temperature and rainfall). However, there is some 

suggestion that koala densities may be highest at intermediate levels of forest cover (FPC) and 

road density and clearer evidence that koala densities depend upon the amount of forest cover 

around sites. There were also some unexpected areas of predicted high density in western 

regions, but these were areas where surveys have not been conducted and uncertainty in the 

density estimates was high (Fig. 3). Therefore, the reliability of the predictions in those western 

areas may be low. 

 

9.1 Koala densities and spatial distributions 
Across the region, the average koala density was estimated to be 0.04 koalas/ha (ranging from 0 

to 6.54 koalas/ha). Although the predicted densities for areas at the top of the range of densities 

are unlikely to be realistic predictions, the vast majority of areas are predicted to have low 

population densities. This suggests that koalas in South East Queensland may be relatively widely 

distributed, but of low density in most areas. The focus of this project was on estimating koala 

densities (defined as the number of koalas per unit area) and this is distinct from population 

numbers (the total number of koalas in an area). 

 

In theory, population numbers could be estimated from the densities estimates, by multiplying 

densities by area, but we guard against doing this without considerable care and further analysis. 

The spatial density predictions are an extrapolation based on a model fitted to data from only a 

small portion of the study region and this could introduce considerable error into an estimate of 

population numbers. We also excluded some areas from the spatial predictions to limit the extent 

to which extrapolations were made outside the range of the data used to develop the model, so we 

do not know what koala densities are in these regions. The power of the spatial model developed 

here is to provide estimates of the distribution of koalas across the region and, although it may 

ultimately be possible to estimate population numbers from this model, this would need 

considerable thought and care to be able to do so with confidence. 
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The negative relationship between temperature and koala densities that we found is consistent 

with other studies elsewhere (Adams-Hosking et al. 2011b, Lunney et al. 2014, Santika et al. 2014) 

and seems to be associated with low koala densities in Ipswich City Council and Noosa Shire 

Council, where temperatures are relatively high. However, the negative relationship with rainfall 

appears contradictory with studies elsewhere (Seabrook et al. 2011, Santika et al. 2014), although 

these studies have typically been conducted in areas where rainfall is likely to be a much greater 

limiting factor. Elevation was not a statistically significant predictor of koala densities, but it did 

have a negative coefficient indicating lower koala densities at high elevations. Although most of the 

remaining covariates were not statistically significant (apart from FPC buffer), there was some 

indication that koala densities are highest at intermediate levels of FPC and road density. It is likely 

that areas of intermediate road density, reflecting intermediate human population densities, 

coincide with areas of good koala habitat because these are the most productive and fertile soils, 

with these patterns having been demonstrated for biodiversity in general (Luck 2007). However, 

once road densities get too high, threats from high density urban development are likely to 

increase substantially, resulting in koala density declines. The relationship between FPC and koala 

density is likely to be a reflection of the fact that their preferred Eucalypt habitat types tend to occur 

at intermediate levels of FPC. We also note, however, that interpretation of individual coefficients 

associated with the spatial covariates is difficult as the value of any one predictor can be masked 

by correlations (even weak correlations) with multiple other variables. 

 

The strong negative relationship between koala density and the FPC buffer variable may appear 

contradictory. However, the variable used was the residuals after accounting for the FPC at the site 

in a regression, thus some of the effect of FPC buffer variable is reflected in the FPC coefficient. 

Therefore, when the FPC buffer variable is low this means that there is lower forest cover around a 

site than would be expected based on the level of forest cover at the site. In this case, a lack of 

forest cover around a site could result in crowding of populations at the site (which would not 

necessarily have low levels of forest cover), resulting in a higher than expected density. Similar 

patterns have been observed at Ney Road in the Koala Coast as habitat at and around the site 

was cleared (Harriet Preece, personal observation), although such patterns will usually be transient 

and the population will eventually decline, as was observed at Ney Road.                                 

                

9.2 Koala Trends 
The estimated declines in koala density in the Koala Coast and Pine Rivers are very rapid and 

there is evidence that the rate at which these populations are declining is actually increasing. Our 

estimates of decline are broadly consistent with previous estimates of trends in the Koala Coast 

(Department of Environment and Resource Management 2012) and Pine Rivers (GHD 2008), but 

changes in the rate of decline had not previously been explored. We did not find any particularly 

strong spatial predictors of declines in density, apart from year, and a strong seasonal effect, but 
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the rate of decline for the Koala Coast was estimated to be more rapid than in Pine Rivers, 

possibly reflecting the different histories of development. 

 

For an animal that already occurs at relatively low densities, annual population declines of the 

order of magnitude estimated here are likely to result in local extinctions for some populations 

within a small number of generations. The koala survey data suggests that there are already a 

number of areas in which koalas may become locally extinct or are at such low densities that they 

are effectively extinct (i.e., they are at high risk of stochastic events eliminating the population and 

have inadequate recruitment rates to sustain the population). For example, in the 1996 major 

survey of the Koala Coast there were two sites (of 17) in which zero or one koalas were detected, 

and no sites (of 21) in the 1997 major survey with detections of zero or one koalas. However, in the 

2010 and 2012 major surveys, there were seven and eight (of 20) sites, respectively, with zero or 

one koalas detected, and large reductions in densities at the remaining sites. Overall, it appears 

that the loss of koalas from many sites in the Koala Coast is imminent, and Pine Rivers sites 

appear to be following a similar trajectory. These types of patterns are common across coastal 

eastern Australia where development and koala habitat coincide (Lunney et al. 2002, Lunney et al. 

2007b, Santika et al. 2014).  

 

9.3 The modelling approach 
This is the first attempt to explicitly model the dynamics and spatial distribution of koala density 

across South East Queensland. In doing so, we used state-of-the art statistical methods that are 

explicit about the temporal dynamics of koala populations and observation processes (Hostetler 

and Chandler 2015). The benefit of such an approach is that it reduces bias in parameter 

estimates, such as trends and the effect of spatial covariates, and allows for the explicit 

quantification of the drivers of the dynamics of the koala populations (at least for those populations 

with sufficient surveys through time) (Dail and Madsen 2011). This is a significant advance in 

methods for modelling koala survey data and provides a new framework which can be used to 

update estimates of spatial distributions and trends as new data is collected.  

 

9.4 Limitations 
There are a number of issues that must be considered when making inferences from these 

analyses. In the case of the strip transects and total counts, detection probability, p, can only be 

estimated if there are repeated surveys of sites within a short enough time interval that it is 

reasonable to assume density has not changed (this is known as the closure assumption) (Royle 

2004, Rota et al. 2009, Dail and Madsen 2011). In this analysis we capitalise on repeated surveys 

within a season to estimate the detection probability, under the assumption that density at sites 

does not change over a six month period. Clearly that is rather a strong assumption because 

koalas may enter or leave a survey site during that time, or may die.  
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However, repeated surveys did often yield fairly consistent counts within a time period, although 

there were some counts that were more variable. Thus, the detection probability parameter likely 

reflects more than simply detection probability and should be interpreted cautiously. This is 

because, if the detection parameter has been underestimated, then koala densities will be 

overestimates and vice versa if detection probability is overestimated. Further, failure to meet the 

closure assumption is likely to result in increased uncertainty in the detection probability parameter 

that is propagated through the analysis and contributes to the uncertainty in all other parameter 

estimates. 

 

One major limitation was potential sampling bias in the survey site locations. Sampling bias in 

survey site selection is problematic for generating spatial predictions of density (Buckland et al. 

2001, Rogerson 2010) and this was a particular problem because approaches to site selection 

varied over the span of the koala survey data. In the early years, survey sites were preferentially 

located in what was deemed to be suitable habitat for koalas and was accessible to survey teams 

(primarily this was public land, although permission was granted to access some private lands). 

This does not constitute a representative spatial sample of environmental conditions across South 

East Queensland, or even within an area such as Pine Rivers or the Koala Coast. In the latter 

years a stratified and randomised sampling approach was developed. These survey designs reflect 

different objectives motivating data collection. 

 

The sampling design in the Koala Coast and Pine Rivers is suitable for quantifying trends at 

particular sites, while more recent survey designs are better suited to quantifying spatial variation 

in koala densities across a wider range of environmental conditions. Further, some regions of 

environmental space are sampled much more intensively than others. For example, there is 

relatively little empirical data that can be used to estimate koala densities in highly urbanised areas 

and in rainforest areas. The ability to predict in these areas, where little or no sampling has 

occurred and where koala densities are likely to be low or zero, is therefore limited. This is a 

general problem of extrapolation outside the range of environmental conditions within which data 

were collected and has important implications for future monitoring survey design (see 

recommendations below).   

 

The dynamics of koala densities at sites is complex and driven by a suite of processes that operate 

at different spatial and temporal scales. Time lags between changes in environmental conditions 

and the effects on animal populations often make it difficult to relate dynamic covariates (e.g., 

temperature, rainfall, habitat clearing, etc.) to population dynamics (Clark and Bjornstad 2004). 

Although some environmental conditions may have obvious and immediate effects (e.g., large 

mortality events arising from extreme weather), many environmental conditions affect populations 

through multiple, complex pathways over a variety of time scales (e.g., fire may have immediate 

detrimental effects, but longer term beneficial effects on koala populations). In our models, 
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dynamic covariates were represented as averaged values across all years because of the difficulty 

of representing lags between changes in covariate values and effects on koala density. Further 

complexity arises when environmental change in the areas surrounding koala habitat is 

considered.  

 

For example, building roads near a survey site will not be accounted for in any site-specific 

covariates, but may still have important long-term effects on population viability if mortality rates of 

animals moving around the area increase. Quantifying covariates within distance buffers around 

each site goes some way to addressing this problem, but does not resolve the issue of lag effects 

associated with those variables. This is an issue that will need future work to examine the 

implications of not being able to account for these complexities in our models. 

 

9.5 Recommendations 
The rapid declines in koala densities in the Koala Coast and Pine Rivers indicate populations in 

considerable danger and there is a risk that it may be too late to stabilise or recover these 

populations. A key question, however, is whether the declines in koala densities in the Koala Coast 

and Pine Rivers are representative of declines elsewhere in the study region, or whether they are 

unique to these regions. The data are currently insufficient to answer this question because of the 

absence of repeated koala surveys over multiple years at sites outside of these two regions. As 

such, a monitoring strategy to identify remaining areas of relatively high koala density and to 

evaluate trends more broadly is critical for developing conservation policy for koalas in South East 

Queensland. If there are areas that are not suffering declines to the same extent as those in the 

Koala Coast and Pine Rivers then these may be areas where koalas could still be conserved with 

adequate protection and management. Identifying these areas with a carefully designed monitoring 

program would appear to be a priority. 

 

Similarly, there were some areas where spatial predictions were highly uncertain or deemed to be 

too far outside of the range of sampled data to make reasonable predictions about koala density. 

Future additional surveys could be targeted in these areas to improve the accuracy and extent of 

the spatial predictions. More generally, the spatial predictions presented here could be used to 

help design future survey strategies in order to improve the efficiency of survey effort and the 

expected benefit of data acquired to our understanding of koala distribution and population 

dynamics. The benefits of using models of the distribution of species combined with techniques for 

optimising survey effort has been shown to be highly effective in other systems (e.g., Hauser and 

McCarthy 2009) and could provide a practical way forward for prioritising future surveys. 

 

The current survey data suffers from three key limitations that should be addressed in future 

decisions about survey design in addition to the two recommendations highlighted above. First, the 

usefulness of the data suffers from a strategy that was initially designed to estimate trends in a few 
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sites, to a later design aimed primarily at obtaining data on the spatial distribution of koalas. 

Appropriate strategies to address these different questions will tend to be quite different and there 

is a need to be clear about what the objectives of the monitoring program are. Ultimately, because 

a single survey design is unlikely to be able to adequately address both trend and spatial 

distribution questions effectively, separate strategies for estimating trends and distributions may be 

required.  

 

Second, the design of many of the surveys makes the estimation of detection error difficult. The 

estimation of detection error, so that unbiased density estimates can be obtained should form a 

central component of future survey design, either through appropriate replication of surveys or 

Distance Sampling (Buckland et al. 2001, Royle 2004, MacKenzie et al. 2006). 

 

Third, the design of the database within which the monitoring data were held was inappropriate for 

effective analysis of the data. In addition to the models presented in this report, this project has 

also delivered a new database structure for the monitoring data that enable efficient retrieval of 

data for analysis. In order to cost-effectively update the analysis presented here as new monitoring 

data becomes available, we strongly recommend that a formal database structure should be 

adopted that ensures data is recorded in a consistent manner, that no important data are missing 

from survey records, and that allows the dataset to be easily transformed into a format that 

facilitates statistical analysis. 
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12. APPENDICES 
 

12.1 Appendix A. Summary of koala monitoring data  
 
Table A1. Number of systematic surveys conducted within each LGA between 1996 and 2015. 

Year Brisbane Gold 
Coast 

Ipswich Logan Moreton 
Bay 

Noosa Redland Total 

1996 10   6   25 41 
1997 10   5   27 42 

1998 2      23 25 
1999 6   3   18 27 

2000 1      1 2 
2001 1    24  2 27 

2002 1      3 4 
2003 1      2 3 

2004 1      1 2 
2005 5   3   17 25 

2006 1      10 11 
2007 1      2 3 

2008 6   3   21 30 
2009         

2010 5   3   21 29 
2011 4  21 2 50  4 81 

2012 6 4 4 26 1  23 64 
2013 1 22   22 18 2 65 

2014 56     8  64 
2015 2       2 

Total 120 26 25 51 97 26 202 547 
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Table A2. Number of systematic surveys conducted within the Koala Coast and Pine Rivers 
between 1996 and 2015. 

Year Koala Coast Pine Rivers Total 

1996 41  41 
1997 42 

 
42 

1998 25  25 
1999 27 

 
27 

2000 2  2 
2001 3 24 27 

2002 4  4 
2003 3 

 
3 

2004 2  2 
2005 25 

 
25 

2006 11  11 
2007 3 

 
3 

2008 30  30 
2009    

2010 29  29 
2011 8 23 31 

2012 32  32 
2013 3 22 25 
2014    
2015    

Total 290 69 359 
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Table A3. Number of independent koalas* detected within each LGA between 1996 and 2015. 

Year Brisbane Gold 
Coast Ipswich Logan Moreton 

Bay Noosa Redland Total 

1996 56 
  

57 
  

254 367 
1997 125 

  
77 

  
478 680 

1998 50 
     

385 435 
1999 83   42   260 385 
2000 30      15 45 
2001 42 

   
138 

 
27 207 

2002 25 
     

45 70 
2003 21 

     
28 49 

2004 18 
     

6 24 
2005 50   29   165 244 
2006 26      89 115 
2007 20 

     
14 34 

2008 28 
  

16 
  

131 175 
2009         
2010 18 

  
15 

  
84 117 

2011 16  29 0 145  11 201 
2012 17 6 7 36 0  88 154 
2013 7 44 

  
56 7 3 117 

2014 7 
    

0 
 

7 
2015 0       0 
Total 639 50 36 272 339 7 2083 3426 

*Independent adult koalas excludes pouch young and dependent juveniles. 
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Table A4. Number of independent koalas* detected within the Koala Coast and Pine Rivers 
between 1996 and 2015. 

Year Koala Coast Pine Rivers Total 

1996 367  367 
1997 680 

 
680 

1998 435  435 
1999 385 

 
385 

2000 45  45 
2001 69 138 207 

2002 70  70 
2003 49 

 
49 

2004 24  24 
2005 244 

 
244 

2006 115  115 
2007 34 

 
34 

2008 175  175 
2009    

2010 117  117 
2011 27 105 132 

2012 117  117 
2013 10 56 66 
2014    
2015    

Total 2963 299 3262 
*Independent adult koalas excludes pouch young and dependent juveniles. 
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Table A5. Area surveyed (ha) within each LGA between 1996 and 2015. 

Year Brisbane Gold 
Coast Ipswich Logan Moreton 

Bay Noosa Redland Total 

1996 244 
  

231 
  

773 1247 
1997 416 

  
284 

  
1094 1794 

1998 71      1203 1274 
1999 204 

  
130 

  
666 1000 

2000 51 
     

22 73 
2001 56    813  61 929 
2002 34 

     
87 122 

2003 37 
     

81 119 
2004 30      20 50 
2005 140 

  
130 

  
880 1150 

2006 51 
     

458 509 
2007 51      80 131 
2008 170 

  
149 

  
1584 1903 

2009         
2010 148   149   1195 1492 
2011 111 

 
971 52 2218 

 
363 3715 

2012 151 129 107 1109 12 
 

1458 2966 
2013 56 1146   773 1182 81 3238 
2014 1160 

    
353 

 
1514 

2015 35 
      

35 
Total 3216 1275 1078 2234 3816 1535 10107 23262 
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Table A6. Area surveyed (ha) within the Koala Coast and Pine Rivers between 1996 and 2015. 

Year Koala Coast Pine 
Rivers Total 

1996 1247 
 

1247 

1997 1794 
 

1794 

1998 1274 
 

1274 

1999 1000 
 

1000 

2000 73 
 

73 

2001 116 813 929 

2002 122 
 

122 

2003 119 
 

119 

2004 50 
 

50 

2005 1150 
 

1150 

2006 509  509 

2007 131 
 

131 

2008 1903  1903 

2009    

2010 1492  1492 

2011 475 839 1314 

2012 1743  1743 

2013 137 773 911 

2014    

2015    

Total 13336 2425 15761 
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12.2 Appendix B. Broad Vegetation Group classifications  
 
Table B1. Broad Vegetation Groups (BVGs) at the scale of 1:5 million (5M), 1:2 million (2M), and 1:1 million (1M) and the classifications for the 
“remnant vegetation (habitat)” and “remnant vegetation (habitat suitability)” covariates. 

5M 
BVG 

DESCRIPTION 2M 
BVG 

 

DESCRIPTION 1M 
BVG 

 

DESCRIPTION “Habitat” 
Classes 

 

“Habitat 
Suitability” 

Classes 
1 Rainforests, 

scrubs 
2 Complex to simple, semi-deciduous 

mesophyll to notophyll vine forest, 
sometimes with Araucaria 
cunninghamii. 

2a Complex evergreen notophyll vine 
forest frequently with Araucaria 
cunninghamii (hoop pine) from 
foothills to ranges. (land zones 11, 
12, 8) 

Other Other 

  3 Notophyll vine forest/ thicket 
(sometimes with sclerophyll and/or 
Araucarian emergents) on coastal 
dunes and sand-masses. 

3a Evergreen to semi-deciduous, 
notophyll to microphyll vine forest/ 
thicket on beach ridges and coastal 
dunes, occasionally Araucaria 
cunninghamii (hoop pine) microphyll 
vine forest on dunes. Pisonia grandis 
on coral cays. (land zone 2, [5])  

Other Other 

  4 Notophyll and notophyll feather palm or 
fan palm vine forest on alluvia, along 
streamlines and in swamps on ranges. 

4a Notophyll and mesophyll vine forest 
with feather or fan palms in alluvia 
and in swampy situations on ranges 
or within coastal sand-masses. (land 
zones 3, 11, 12, 2)  

Other Other 

    4b Evergreen to semi-deciduous 
mesophyll to notophyll vine forest, 
frequently with Archontophoenix spp. 
(palms) fringing streams. (land zones 
3, [10]) 

Other Other 

  5 Notophyll to microphyll vine forests, 
frequently with Araucaria spp. or 
Agathis spp. 

5a Araucarian notophyll/microphyll and 
microphyll vine forests of southern 
coastal bioregions. (land zones 8, 
11, 5, 9) 

Other Other 
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  6 Notophyll vine forest and microphyll fern 
forest to thicket on high peaks and 
plateaus. 

6a Notophyll vine forest and microphyll 
fern forest to thicket on high peaks 
and plateaus of southern 
Queensland. (land zone 8) (SEQ) 

Other Other 

  7 Semi-evergreen to deciduous microphyll 
vine thicket. 

7a Semi-evergreen vine thickets on 
wide range of substrates. (land 
zones 8, 9, 11, 12, 5, 4, 3, 10, [7])  

Other Other 

2 Wet eucalypt 
open-forests 

8 Wet eucalypt tall open-forest on uplands 
and alluvia. 

8a Wet tall open forest dominated by 
species such as Eucalyptus grandis 
(flooded gum) or E. saligna, E. 
resinifera (red mahogany), 
Lophostemon confertus (brush box), 
Syncarpia glomulifera (turpentine), E. 
laevopinea (silvertop stringybark). 
Contains a well-developed 
understorey of rainforest 
components, including ferns and 
palms, or the understorey may be 
dominated by sclerophyll shrubs. 
(land zones 12, 8, 10, 11, 3, 5, 9)  

Euc/Mel Suitable 

    8b Moist open forests to tall open 
forests mostly dominated by 
Eucalyptus pilularis (blackbutt) on 
coastal sands, sub-coastal 
sandstones and basalt ranges. Also 
includes tall open forests dominated 
by E. montivaga, E. obliqua 
(messmate stringybark) and E. 
campanulata (New England ash). 
(land zones 12, 2, 9, 11, 5, 8) 

Euc/Mel Low suitability 
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3 Eastern 
eucalypt 
woodlands to 
open-forests 

9 Moist to dry eucalypt open-forests to 
woodlands usually on coastal lowlands 
and ranges. 

9a Moist to dry eucalypt open forests to 
woodlands, dominated by a variety of 
species including Eucalyptus 
acmenoides (narrow-leaved white 
stringybark), E. carnea (broad-leaved 
white mahogany), E. propinqua 
(small-fruited grey gum), E. 
siderophloia (red ironbark), E. 
tindaliae (Queensland white 
stringybark), E. racemosa, Corymbia 
intermedia (pink bloodwood), C. 
trachyphloia (yellow bloodwood), E. 
planchoniana (Planchon's 
stringybark), E. baileyana (Bailey's 
stringybark), E. moluccana (gum-
topped box) and Angophora 
leiocarpa (rusty gum). (land zones 
11, 9-10, 8, 12, 5, 3) 

Euc/Mel High 
suitability 

    9f Woodlands dominated by Corymbia 
spp. e.g.: C. intermedia (pink 
bloodwood), C. tessellaris (Moreton 
Bay ash) and/or Eucalyptus spp. (E. 
racemosa, E. tereticornis (blue 
gum)), frequently with Banksia spp., 
Acacia spp. and Callitris columellaris 
(white cypress pine) on coastal 
dunes and beach ridges. (land zone 
2) 

Euc/Mel Suitable 

    9g Moist woodlands dominated by 
Eucalyptus tindaliae (Queensland 
white stringybark) or E. racemosa or 
E. tereticornis (blue gum) and 
Corymbia intermedia (pink 
bloodwood) on remnant Tertiary 
surfaces. (land zone 5)  

Euc/Mel Suitable 
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    9h Dry woodlands dominated by 
species such as Eucalyptus 
acmenoides (narrow-leaved white 
stringybark) (or E. portuensis), E. 
tereticornis (blue gum), Angophora 
leiocarpa (rusty gum), Corymbia 
trachyphloia (yellow bloodwood) or 
C. intermedia (pink bloodwood), and 
often ironbarks including E. crebra 
(narrow-leaved red ironbark) or E. 
fibrosa (dusky-leaved ironbark). A 
heathy shrub layer is frequently 
present. On undulating to hilly 
terrain. (land zones 12, 11, [5]) 

Euc/Mel Suitable 

  10 Corymbia citriodora dominated open-
forests to woodlands on undulating to 
hilly terrain. 

10b Moist open forests to woodlands 
dominated by Corymbia citriodora 
(spotted gum). (land zones 12, 11, 9, 
5, 8)  

Euc/Mel Low suitability 

  11 Moist to dry eucalypt open-forests to 
woodlands mainly on basalt areas (land 
zone 8). 

11a Moist to dry open forests to 
woodlands dominated by Eucalyptus 
orgadophila (mountain coolibah). 
Some areas dominated by E. 
tereticornis (blue gum), E. melliodora 
(yellow box), E. albens (white box), 
E. crebra (narrow-leaved red 
ironbark) or E. melanophloia (silver-
leaved ironbark). (land zones 8, 11, 
4, [3])  

Euc/Mel High 
suitability 
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  12 Dry eucalypt woodlands to open-
woodlands, mostly on shallow soils in 
hilly terrain (mainly on sandstone and 
weathered rocks, land zones 7 and 10). 

12a Dry woodlands to open woodlands 
dominated by ironbarks such as 
Eucalyptus decorticans (gum-topped 
ironbark), E. fibrosa subsp. nubila 
(blue-leaved ironbark), or E. crebra 
(narrow-leaved red ironbark) and/or 
bloodwoods such as Corymbia 
trachyphloia (yellow bloodwood), C. 
leichhardtii (rustyjacket), C. 
watsoniana (Watson's yellow 
bloodwood), C. lamprophylla, C. 
peltata (yellowjacket). Occasionally 
E. thozetiana (mountain yapunyah), 
E. cloeziana (Gympie messmate) or 
E. mediocris are dominant. Mostly on 
sub-coastal/inland hills with shallow 
soils. (land zones 10, 7, 9)  

Euc/Mel Low suitability 

  13 Dry to moist eucalypt woodlands and 
open forests, mainly on undulating to 
hilly terrain of mainly metamorphic and 
acid igneous rocks, Land zones 11 and 
12). 

13c Woodlands of Eucalyptus crebra 
(sens. lat.) (narrow-leaved red 
ironbark), E. drepanophylla (grey 
ironbark), E. fibrosa (dusky-leaved 
ironbark), E. shirleyi (shirley's silver-
leaved ironbark) on granitic and 
metamorphic ranges (land zones 12, 
11, 9, [5]) 

Euc/Mel Suitable 

    13d Woodlands dominated by Eucalyptus 
moluccana (gum-topped box) (or E. 
microcarpa (inland grey box)) on a 
range of substrates. (land zone 5, 9, 
3, 11, 12) 

Euc/Mel High 
suitability 
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4 Eucalypt open-
forests to 
woodlands on 
floodplains 

16 Eucalyptus spp. dominated open-forest 
and woodlands drainage lines and 
alluvial plains. 

16a Open forest and woodlands 
dominated by Eucalyptus 
camaldulensis (river red gum) (or E. 
tereticornis (blue gum)) and/or E. 
coolabah (coolabah) (or E. 
microtheca (coolabah)) fringing 
drainage lines. Associated species 
may include Melaleuca spp., 
Corymbia tessellaris (carbeen), 
Angophora spp., Casuarina 
cunninghamiana (riveroak). Does not 
include alluvial areas dominated by 
herb and grasslands or alluvial plains 
that are not flooded. (land zone 3) 

Euc/Mel High 
suitability 

    16c Woodlands and open woodlands 
dominated by Eucalyptus coolabah 
(coolabah) or E. microtheca 
(coolabah) or E. largiflorens (black 
box) or E. tereticornis (blue gum) or 
E. chlorophylla on floodplains. Does 
not include alluvial areas dominated 
by herb and grasslands or alluvial 
plains that are not flooded. (land 
zone 3) 

Euc/Mel High 
suitability 

    16d River beds, open water or sand, or 
rock, frequently unvegetated. (land 
zone 3) 

Other Other 

5 Eucalypt dry 
woodlands on 
inland 
depositional 
plains 

17 Eucalyptus populnea or E. 
melanophloia (or E. whitei) dry 
woodlands to open-woodlands on 
sandplains or depositional plains. 

17b Woodlands to open woodlands 
dominated by Eucalyptus 
melanophloia (silver-leaved ironbark) 
(or E. shirleyi (shirley's silver-leaved 
ironbark)) on sand plains and foot-
slopes of hills and ranges. (land 
zones 5, 12, 3, 11, 9, 7) 

Euc/Mel Low suitability 
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  18 Dry eucalypt woodlands to open-
woodlands primarily on sandplains or 
depositional plains. 

18b Woodlands dominated Eucalyptus 
crebra (sens. lat.) (narrow-leaved red 
ironbark) frequently with Corymbia 
spp. or Callitris spp. on flat to 
undulating plains. (land zones 5, 3) 

Euc/Mel Low suitability 

8 Melaleuca 
open-
woodlands on 
depositional 
plains 

21 Melaleuca spp. dry woodlands to open-
woodlands on sandplains or 
depositional plains. 

21b Low open woodlands and tall shrub-
lands of Melaleuca citrolens or M. 
stenostachya or other Melaleuca 
spp. (land zones 5, 3, 7, 10, 11, 12) 

Euc/Mel Low suitability 

  22 Melaleuca spp. on seasonally inundated 
open-forests and woodlands of lowland 
coastal swamps and fringing lines. 
(palustine wetlands). 

22a Open forests and woodlands 
dominated by Melaleuca 
quinquenervia (swamp paperbark) in 
seasonally inundated lowland coastal 
areas and swamps. (land zones 3, 2, 
1, [11]) 

Euc/Mel High 
suitability 

    22c Open forests dominated by 
Melaleuca spp. (M. argentea (silver 
tea-tree), M. leucadendra (broad-
leaved tea-tree), M. dealbata 
(swamp tea-tree) or M. fluviatilis), 
fringing major streams with 
Melaleuca saligna or M. bracteata 
(black tea-tree) in minor streams. 
(land zone 3) 

Euc/Mel Low suitability 

10 Other acacia 
dominated 
open-forests, 
woodlands and 
shrublands 

25 Acacia harpophylla sometimes with 
Casuarina cristata open-forests to 
woodlands on heavy clay soils. 

25a Open forests to woodlands 
dominated by Acacia harpophylla 
(brigalow) sometimes with Casuarina 
cristata (belah) on heavy clay soils. 
Includes areas co-dominated with A. 
cambagei (gidgee) and/or emergent 
eucalypts (land zones 4, 9, 3, 11, 7, 
12, [5, 8]) 

Other Other 
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12 Other coastal 
communities or 
heaths 

28 Open-forests to open-woodlands in 
coastal locations. Dominant species 
such as Casuarina spp., Corymbia spp., 
Allocasuarina spp., Acacia spp., 
Lophostemon suaveolens, Asteromyrtus 
spp., Neofabricia myrtifolia. 

28a Complex of open shrub-land to 
closed shrub-land, grassland, low 
woodland and open forest, on strand 
and foredunes. Includes pure stands 
of Casuarina equisetifolia (coastal 
sheoak). (land zones 2, 1) 

Other Other 

    28d Sand blows to closed herblands of 
Lepturus repens (stalky grass) and 
herbs on sand cays and shingle 
cays. (land zone 2) 

Other Other 

    28e Low open forest to woodlands 
dominated by Lophostemon 
suaveolens (swamp box) (or L. 
confertus (brush box)) or Syncarpia 
glomulifera (turpentine) frequently 
with Allocasuarina spp. on rocky hill 
slopes. (land zones 12, 9, 3, 11, [10, 
8]) 

Euc/Mel Low suitability 

  29 Heathlands and associated scrubs and 
shrub-lands on coastal dune-fields and 
inland/ montane locations. 

29a Open heaths and dwarf open heaths 
on coastal dune-fields, sandplains 
and headlands. (land zones 5, 2, 3, 
[7, 10, 12, 11]) 

Other Other 

    29b Open shrub-lands to open heaths in 
montane frequently rocky locations. 
(land zones 7, 12, 11, 5, 8, 10) 

Other Other 

13 Tussock 
grasslands, 
forblands 

30 Astrebla spp., Dichanthium spp. tussock 
grasslands. 

30b Tussock grasslands dominated by 
Astrebla spp. (Mitchell grass) or 
Dichanthium spp. (bluegrass) often 
with Iseilema spp. on undulating 
downs or clay plains. (land zones 9, 
3, 4, 8, [5]) 

Other Other 

15 Wetlands 
(swamps and 
lakes) 

34 Wetlands associated with permanent 
lakes and swamps, as well as 
ephemeral lakes, clay-pans and 
swamps. Includes fringing woodlands 
and shrub-lands. 

34a Lacustrine wetlands. Lakes, 
ephemeral to permanent, fresh to 
brackish; water bodies with ground 
water connectivity. Includes fringing 
woodlands and sedgelands. (land 
zones 3, 2, [1]) 

Other Other 
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    34c Palustrine wetlands. Freshwater 
swamps on coastal floodplains 
dominated by sedges and grasses 
such as Oryza spp., Eleocharis spp. 
(spikerush) or Baloskion spp. (cord 
rush) / Leptocarpus tenax / Gahnia 
sieberiana (sword grass) / Lepironia 
spp. (land zones 3, 2, [1]) 

Other Other 

    34d Palustrine wetlands. Freshwater 
swamps/springs/billabongs on 
floodplains ranging from permanent 
and semi-permanent to ephemeral. 
(land zone 3) 

Other Other 

    34f Palustrine wetlands. 
Sedgelands/grasslands on seeps 
and soaks on wet peaks, coastal 
dunes and other non-floodplain 
features.  (land zones 3, 9, 12, [11]) 

Other Other 

16 Mangroves and 
tidal 
saltmarshes 

35 Mangroves and tidal saltmarshes. 35a Closed forests and low closed 
forests dominated by mangroves. 
(land zone 1) 

Other Other 

    35b Bare saltpans ± areas of Tecticornia 
spp. (samphire) sparse forbland 
and/or Xerochloa imberbis or 
Sporobolus virginicus (sand couch) 
tussock grassland. (land zone 1) 

Other Other 
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Rationale for “habitat suitability” classification  

The Queensland Herbarium’s Broad Vegetation Groups (BVGs) occurring in the Southeast 

Queensland region were classified in three koala habitat suitability classes based on their 

dominant and sub-dominant tree species composition and the underlying geological substrate. The 

Eucalyptus genus (consisting of eucalypt, corymbia and angophora species) has consistently been 

shown to provide the principal nutritional resources for koalas, and hence we maintain that they 

constitute the major limiting resources that influence habitat quality. There is a large body of 

evidence that koalas often use a relatively small number of the Eucalyptus species in South East 

Queensland. We used this information to classify BVGs into three habitat suitability classes: high 

suitability, suitable and low suitability.  

 

High suitability class. 

BVGs 9a, 13d, 16a, 16c and 22a were categorised as high suitability koala habitat. This class is 

able to support moderate to high densities of koalas, especially where mortality from key 

threatening processes has not caused “empty habitat’. The key criteria for this ranking were the 

dominance or sub-dominance of Queensland blue gum (Eucalyptus tereticornis), small-fruited grey 

gum (E. propinqua), tallowwood (E. microcorys), gum-top box (E. moluccana) and swamp 

mahogany (E. robusta), within the BVG. There is strong empirical evidence across South East 

Queensland that koalas regularly use E. tereticornis for forage (Hasegawa 1995, McAlpine et al. 

2006a, McAlpine et al. 2006b, Callaghan et al. 2011, Waller 2012, Rymer 2014). This species is 

widely distributed in South East Queensland and occurs on fertile alluvial soils and coastal 

lowlands. Hasegawa (1995) found that E. tereticornis constituted greater than 80% of cuticle 

fragments from pellet samples over a 12-month period in Victoria Point, Redland Bay. Similarly, E. 

tereticornis was identified as the highest ranked eucalypt species for Noosa Shire for a 1996-97 

and 2001-02 survey periods (Callaghan et al. 2011). Koalas are also known to regularly use E. 

propinqua, E. microcorys and E. acmenoides associated with the wetter eucalypt forests in the 

Sunshine Coast hinterland (McAlpine et al. 2006a, McAlpine et al. 2006b, Callaghan et al. 2011) 

and the Gold Coast hinterland (J. Callaghan personal communication). 

 

Suitable class. 

BVGs in this class are generally of low-moderate habitat suitability. Key eucalypt species in the tall 

wet BVGs include flooded gum (E. grandis), Sydney blue gum (E. saligna), red stringbark (E. 

resinifera) and white mahogany (E. acmenoides). Suitable habitats in the drier BVG woodlands 

and open forests are dominated by E. acmenoides, narrow-leaved ironbark (E. crebra), broad-

leaved ironbark (E. fibrosa) and silver-leaved ironbark (E. melanophloia) and coastal forests 

dominated by scribbly-gum (E. racemosa) with narrow-leaved grey gum (E. seeana) and E. 

tereticornis often a sub-dominant species.  
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Angophora and Corymbia species such as rusty-gum (Angophora leiocarpa), yellow bloodwood 

(Corymbia trachyphloia), pink bloodwood (C. intermedia) and Moreton-Bay Ash (C. tesselaris) are 

also common. With the exception of E. tereticornis, these species have a lower rate of usage as a 

food resource by koalas, and so tend to support lower koala densities. 

 

Low suitability class. 

BVGs in this class are generally of low habitat suitability. Woodland to open woodlands dominated 

by spotted gum (Corymbia citriodora subsp. variegate, C. citriodora subsp. citriodora) and E. 

melanophloia on poorer soils are of low habitat suitability for koalas. Similarly tall blackbutt forests 

(E. pilurlaris) have a low rate of usage by koalas. These BVGs occur mainly on low fertility soils. 
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12.3 Appendix C. Detection function fit  
 
The half-normal distribution provided a reasonable fit to the observed distribution of perpendicular 

distances of koala sighting from the transect line (Figure C1). 

  

 
Figure C1. Histogram of the observed perpendicular distances of koala sightings and the fitted 
half-normal curve that we used to approximate the distribution.  
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12.4 Appendix D. JAGS code 
 

Spatial model  

model { 

 

# process model 

 

#random-effect for a - loop through years 

for (i in 1:4) 

{ 

 a[i] ~ dlnorm(amean,tau1) 

} 

 

# loop through sites 

for (i in 1:NSites) 

{ 

 #intercept random-effect 

 intmean[i] <- sum(Y[i,1,] * alpha) 

 int[i] ~ dnorm(intmean[i],tau2) 

  

 # sample density for first time step 

 Lambda[i,1] <- exp(int[i] + sum(X[i,1,] * beta)) 

 # D[i,j] is density 

    # mean of dgamma(a, b) is a/b, so if Lambda[i] = a/b, we sample a and  

     # calculate b deterministically using Lambda 

 b[i,1] <- a[trunc((Year[i,1] - 1995)/5.1) + 1]/Lambda[i,1] 

 D[i,1] ~ dgamma(a[trunc((Year[i,1] - 1995)/5.1) + 1],b[i,1]) 

 # simulate for model adequacy checks 

 #D.sim[i,1] ~ dgamma(a[trunc((Year[i,1] - 1995)/5.1) + 1],b[i,1]) 

  

 # loop through remaining time steps 

 for (j in 2:NSteps) 

 { 

  # sample density for remaining time step 

  Lambda[i,j] <- exp(int[i] + sum(X[i,j,] * beta)) 

  # D[i,j] is density 

  # mean of dgamma(a, b) is a/b, so if Lambda[i] = a/b, we sample a and  
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  # calculate b deterministically using Lambda 

  b[i,j] <- a[trunc((Year[i,j] - 1995)/5.1) + 1]/Lambda[i,j] 

  D[i,j] ~ dgamma(a[trunc((Year[i,j] - 1995)/5.1) + 1],b[i,j]) 

  # simulate for model adequacy checks (uncomment to use) 

  #D.sim[i,j] ~ dgamma(a[trunc((Year[i,j] - 1995)/5.1) + 1],b[i,j])   

 } 

} 

 

# observation model - strip transects 

# count data 

for (i in 1:NStrips) 

{ 

 #sample observed counts 

 SNTrue[i] <- ifelse((round(D[SIndex[i,1],SIndex[i,2]] * Area[i]) - (D[SIndex[i,1],SIndex[i,2]] * 

Area[i])) <= 0.5,round(D[SIndex[i,1],SIndex[i,2]] * Area[i]),trunc(D[SIndex[i,1],SIndex[i,2]] * 

Area[i])) 

 NAll[i] ~ dbin(p,SNTrue[i]) 

 

 #goodness-of-fit & model adequacy (uncomment to use) 

 #compute discrepancy statistics for observed data 

 #expect[i] <- p * Lambda[SIndex[i,1],SIndex[i,2]] * Area[i] 

 #res.obs[i] <- NAll[i] - expect[i] 

 #R.obs[i] <- pow((NAll[i] - expect[i]),2) / expect[i] 

 #compute discrepancy statistics for simulated data 

 #SNT.sim[i] <- ifelse((round(D.sim[SIndex[i,1],SIndex[i,2]] * Area[i]) - 

(D.sim[SIndex[i,1],SIndex[i,2]] * Area[i])) <= 0.5,round(D.sim[SIndex[i,1],SIndex[i,2]] * 

#Area[i]),trunc(D.sim[SIndex[i,1],SIndex[i,2]] * Area[i])) 

 #y.sim[i] ~ dbin(p,SNT.sim[i]) 

 #res.sim[i] <- y.sim[i] - expect[i] 

 #R.sim[i] <- pow((y.sim[i] - expect[i]),2) / expect[i] 

} 

 

# observation model - line transects 

# perpendicular distance data 

# Distance Sampling (estimate f0) - this is separate from the density estimate 

# because this should not be applied to any records with 0 observations, whereas 

# the density estimate is applied to all line transects 

for (i in 1:NDists) 
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{ 

 #likelihood function for half-normal 

 zeros[i] ~ dpois(phi[i])  

 phi[i] <- -(log(2 * DistLambda / 3.141593) / 2 - DistLambda * pow(PDist[i],2) / 2) 

} 

f0 <- sqrt(2 * DistLambda / 3.141593) 

# count data 

for (i in 1:NLines) 

{ 

 #sample observed counts 

 NAll[NStrips + i] ~ dpois((D[LIndex[i,1],LIndex[i,2]] * 2 * LL[i]) / (f0 * 10000)) 

  

 #goodness-of-fit 

 #compute discrepancy statistics for observed data 

 #expect[NStrips + i] <- (Lambda[LIndex[i,1],LIndex[i,2]] * 2 * LL[i]) / (f0 * 10000) 

 #res.obs[NStrips + i] <- NAll[NStrips + i] - expect[NStrips + i]  

 #R.obs[NStrips + i] <- pow((NAll[NStrips + i] - expect[NStrips + i]),2) / expect[NStrips + i] 

 #compute discrepancy statistics for simulated data 

 #y.sim[NStrips + i] ~ dpois((D.sim[LIndex[i,1],LIndex[i,2]] * 2 * LL[i]) / (f0 * 10000)) 

 #res.sim[NStrips + i] <- y.sim[NStrips + i] - expect[NStrips + i] 

 #R.sim[NStrips + i] <- pow((y.sim[NStrips + i] - expect[NStrips + i]),2) / expect[NStrips + i] 

} 

 

#calculate goodness-of-fit statistics (uncomment to use) 

#fit.obs <- sum(R.obs[]) 

#fit.sim <- sum(R.sim[]) 

#fit.test <- fit.obs - fit.sim 

 

# priors 

amean ~ dnorm(0,0.001) 

tau1 <- sig1^-2 

sig1 ~  dunif(0,10) 

tau2 <- sig2^-2 

sig2 ~  dunif(0,10) 

for (i in 1:Ny) 

{ 

 alpha[i] ~ dnorm(0,0.001) 

} 
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for (i in 1:Nx) 

{ 

 beta[i] ~ dnorm(0,0.001) 

} 

p ~ dunif(0,1) 

DistLambda ~ dgamma(0.001,0.001) 

 

} 

 

Trend model  

 

model { 

 

# process model 

 

#random-effect for a - loop through years 

for (i in 1:4) 

{ 

 a[i] ~ dlnorm(amean,tau1) 

} 

 

# loop through sites 

for (i in 1:NSites) 

{ 

 #intercept for random-effect on initial population size 

 intmean[i] <- sum(Y[i,1] * alpha) 

 int[i] ~ dnorm(intmean[i],tau2) 

  

 # sample density for first time step 

 Lambda[i,1] <- exp(int[i]) 

 # D[i,j] is density 

# mean of dgamma(a, b) is a/b, so if Lambda[i] = a/b, we sample a and  

# calculate b deterministically using Lambda 

 b[i,1] <- a[trunc((Year[i,1] - 1995)/5.1) + 1]/Lambda[i,1] 

 D[i,1] ~ dgamma(a[trunc((Year[i,1] - 1995)/5.1) + 1],b[i,1]) 

 # simulate for model adequacy checks 

 #D.sim[i,1] ~ dgamma(a[trunc((Year[i,1] - 1995)/5.1) + 1],b[i,1]) 
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 #intercept for growth rate 

 intr[i] <- sum(X[i,1,] * beta) 

 

 # loop through remaining time steps 

 for (j in 2:NSteps) 

 { 

  # sample density for remaining time step 

  r[i,j - 1] <- exp(intr[i] + sum(Z[i,j - 1,] * epsilon)) 

  Lambda[i,j] <- D[i,j - 1] * r[i,j - 1] 

  # D[i,j] is density 

  # mean of dgamma(a, b) is a/b, so if Lambda[i] = a/b, we sample a and  

  # calculate b deterministically using Lambda 

  b[i,j] <- a[trunc((Year[i,j] - 1995)/5.1) + 1]/Lambda[i,j] 

  D[i,j] ~ dgamma(a[trunc((Year[i,j] - 1995)/5.1) + 1],b[i,j]) 

  # simulate for model adequacy checks (uncomment to use) 

  #D.sim[i,j] ~ dgamma(a[trunc((Year[i,j] - 1995)/5.1) + 1],b[i,j])   

 } 

} 

 

# observation model - strip transects 

# count data 

for (i in 1:NStrips) 

{ 

 #sample observed counts 

 SNTrue[i] <- ifelse((round(D[SIndex[i,1],SIndex[i,2]] * Area[i]) - (D[SIndex[i,1],SIndex[i,2]] * 

Area[i])) <= 0.5,round(D[SIndex[i,1],SIndex[i,2]] * Area[i]),trunc(D[SIndex[i,1],SIndex[i,2]] * Area[i])) 

 NAll[i] ~ dbin(p,SNTrue[i]) 

 

 #goodness-of-fit & model adequacy (uncomment to use) 

 #compute discrepancy statistics for observed data 

 #expect[i] <- p * Lambda[SIndex[i,1],SIndex[i,2]] * Area[i] 

 #res.obs[i] <- NAll[i] - expect[i] 

 #R.obs[i] <- pow((NAll[i] - expect[i]),2) / expect[i] 

 #compute discrepancy statistics for simulated data 

 #SNT.sim[i] <- ifelse((round(D.sim[SIndex[i,1],SIndex[i,2]] * Area[i]) - 

(D.sim[SIndex[i,1],SIndex[i,2]] * Area[i])) <= 0.5,round(D.sim[SIndex[i,1],SIndex[i,2]] * 

#Area[i]),trunc(D.sim[SIndex[i,1],SIndex[i,2]] * Area[i])) 

 #y.sim[i] ~ dbin(p,SNT.sim[i]) 
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 #res.sim[i] <- y.sim[i] - expect[i] 

 #R.sim[i] <- pow((y.sim[i] - expect[i]),2) / expect[i] 

} 

 

# observation model - line transects 

# perpendicular distance data 

# Distance Sampling (estimate f0) - this is separate from the density estimate 

# because this should not be applied to any records with 0 observations, whereas 

# the density estimate is applied to all line transects 

for (i in 1:NDists) 

{ 

 #likelihood function for half-normal 

 zeros[i] ~ dpois(phi[i])  

 phi[i] <- -(log(2 * DistLambda / 3.141593) / 2 - DistLambda * pow(PDist[i],2) / 2) 

} 

f0 <- sqrt(2 * DistLambda / 3.141593) 

# count data 

for (i in 1:NLines) 

{ 

 #sample observed counts 

 NAll[NStrips + i] ~ dpois((D[LIndex[i,1],LIndex[i,2]] * 2 * LL[i]) / (f0 * 10000)) 

  

 #goodness-of-fit & model adequacy (uncomment to use) 

 #compute discrepancy statistics for observed data 

 #expect[NStrips + i] <- (Lambda[LIndex[i,1],LIndex[i,2]] * 2 * LL[i]) / (f0 * 10000) 

 #res.obs[NStrips + i] <- NAll[NStrips + i] - expect[NStrips + i]  

 #R.obs[NStrips + i] <- pow((NAll[NStrips + i] - expect[NStrips + i]),2) / expect[NStrips + i] 

 #compute discrepancy statistics for simulated data 

 #y.sim[NStrips + i] ~ dpois((D.sim[LIndex[i,1],LIndex[i,2]] * 2 * LL[i]) / (f0 * 10000)) 

 #res.sim[NStrips + i] <- y.sim[NStrips + i] - expect[NStrips + i] 

 #R.sim[NStrips + i] <- pow((y.sim[NStrips + i] - expect[NStrips + i]),2) / expect[NStrips + i] 

} 

 

#calculate goodness-of-fit statistics (uncomment to use)  

#fit.obs <- sum(R.obs[]) 

#fit.sim <- sum(R.sim[]) 

#fit.test <- fit.obs - fit.sim 
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# priors 

amean ~ dnorm(0,0.001) 

tau1 <- sig1^-2 

sig1 ~  dunif(0,10) 

tau2 <- sig2^-2 

sig2 ~  dunif(0,10) 

for (i in 1:Ny) 

{ 

 alpha[i] ~ dnorm(0,0.001) 

} 

for (i in 1:Nx) 

{ 

 beta[i] ~ dnorm(0,0.001) 

} 

for (i in 1:Nz) 

{ 

 epsilon[i] ~ dnorm(0,0.001) 

} 

p ~ dunif(0,1) 

DistLambda ~ dgamma(0.001,0.001) 

 

} 
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12.5 Appendix E. Quantile-quantile plots and spatial spline correlograms 
 

Spatial model  

 
Figure E1. Quantile-quantile plot for the best spatial model (model 6). The median points and the 
observed credible interval (CI) lies below the 1:1 line for high quantile values indicating some 
under-dispersion in the observed data relative to the model. However, because the observed CI 
overlaps the simulated CI, this suggests that this is not statistically significant under-dispersion 
at the 5% significance level.      
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Figure E2. Spatial spline correlogram of the residuals from the best spatial model (model 6). 
Mean and 95% confidence intervals shown. Low correlations and 95% confidence intervals 
overlapping zero at all distances indicates no significant spatial autocorrelation in the residuals.  
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Trend model  

 
Figure E3. Quantile-quantile plot for the best trend model (model 1). The median points and the 
observed credible interval (CI) lies slightly below the 1:1 line for high quantile values indicating 
some minor under-dispersion in the observed data relative to the model. However, because the 
observed CI overlaps the simulated CI, this suggests that this is not statistically significant 
under-dispersion at the 5% significance level.   
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Figure E4. Spatial spline correlogram for the best trend model (model 1). Mean and 95% 
confidence intervals shown. Low correlations and 95% confidence intervals overlapping zero at 
all distances indicates no significant spatial autocorrelation in the residuals.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0 20000 40000 60000 80000

-1
.0

-0
.5

0.
0

0.
5

1.
0

Distance

C
or

re
la

tio
n



Report For: Department of Environment and Heritage Protection 
Re: South East Queensland Koala Population Modelling Study 
 

 
UniQuest File Reference: C01932   Page 86 

12.6 Appendix F. The 95% credible intervals for spatial predictions of koala density. 
 

  
 

Figure F1. The upper and lower bounds for the expected koala densities based on the best 
spatial model (model 6). Maps were constructed at a resolution of 50ha, but excluding areas that 
were outside the range of covariate values at the surveyed sites for elevation, FPC, FPC buffer, 
and road density.    
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12.7 Appendix G. Spatial predictions for the second best spatial model. 
 

  
 
Figure G1. The spatial distribution of expected koala densities based on the second best spatial 
model (model 9) and the coefficient of variation for those densities. Maps were constructed at a 
resolution of 50ha, but excluding areas that were outside the range of covariate values at the 
surveyed sites for elevation, FPC, FPC buffer, and road density.  
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Figure G2. The upper and lower bounds for the expected koala densities based on the second 
best spatial model (model 9). Maps were constructed at a resolution of 50ha, but excluding 
areas that were outside the range of covariate values at the surveyed sites for elevation, FPC, 
FPC buffer, and road density.    
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